Math, asked by 9896292084, 1 year ago

The following distribution shows the daily pocket money of children of a
school :
Daily Pocket Money (Rs.) 11-13 13-15 15-17 17-19 19-21 21-23 23-25
Number of Children 7 6 9 13 20 5 4
Find the average daily pocket money of children.

Answers

Answered by Anonymous
15

AnswEr :

\underline{\bigstar\:\textsf{As \: per \: given \: in \: question:}}

\begin{tabular}{| c | c | c | c | c | c | c | c |}\cline{1-8} </p><p>\bf{Daily \: pocket \: money } &amp; \sf{11-13} &amp; \sf{13-15}  &amp; \sf{15-17}  &amp; \sf{17-19} &amp; \sf{19-21} &amp; \sf{21-23} &amp; \sf{23-25} \\ \cline{1-8}\bf{No. \: of \: children} &amp; \sf{7} &amp; \sf{6} &amp; \sf{9} &amp; \sf{13} &amp; \sf{20} &amp; \sf{5} &amp; \sf{4} \\ \cline{1-8}\end{tabular}

\bullet We have to find Average daily income or Mean of the following data

\underline{\bigstar\:\textsf{Let's \: head \: to \: the \: question \: now:}}

\begin{tabular}{| c | c | c | c |}\cline{1-4}</p><p>\bf{Class interval} &amp; \bf{Frequency(fi)} &amp; \bf{xi} &amp; \bf{fixi}\\ \cline{1-4}\sf{11-13} &amp; \sf{7} &amp; \sf{12} &amp; \sf{84}\\ \cline{1-4}\sf{13-15} &amp; \sf{6} &amp; \sf{14} &amp; \sf{84}\\ \cline{1-4}\sf{15-17} &amp; \sf{9} &amp; \sf{16} &amp; \sf{144}\\ \cline{1-4}\sf{17-19} &amp; \sf{13} &amp; \sf{18} &amp; \sf{234}\\ \cline{1-4}\sf{19-21} &amp; \sf{20} &amp; \sf{20} &amp; \sf{400}\\ \cline{1-4}\sf{21-23} &amp; \sf{5} &amp; \sf{22} &amp; \sf{110}\\ \cline{1-4}\sf{23-25} &amp; \sf{4} &amp; \sf{24} &amp; \sf{96}\\ \cline{1-4}\sf{Total =} &amp; \sf{64} &amp; \sf{} &amp; \sf{1,152}\\ \cline{1-4}\end{tabular}

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{Make \: a \: table \: to \: represent \: values}) }

 \rule{100}2

\scriptsize\sf{\: \: \: \: \: \:( \therefore\ \: \pink{ Using \: direct  \: method}) }

\large\ : \implies{\boxed{\sf \red{Mean = \frac{\sum\limits f_i x_i}{\sum\limits f_i}}}}

\normalsize\ : \implies\sf\ Mean = \frac{\cancel{1,152}}{\cancel{64}} \\ \\ \normalsize\ : \implies\sf\ Mean = 18

\therefore\underline{\textsf{Average \: daily \: pocket \: money \: of \: children \: is \: 18 \: rupees}}

 \rule{100}2

Other methods to find Mean :

\star\normalsize{\boxed{\sf \green{Assumed_{method} = a + \frac{\sum\limits f_i d_i}{\sum\limits\ d_i} }}}

\star\normalsize{\boxed{\sf \blue{Step \: deviation_{method} = a + \frac{\sum\limits f_i u_i}{\sum\limits u_i} \times\ h }}}

Similar questions