Math, asked by chandershakher743, 4 months ago

The foot of the ladder is 9.5m away from the wall and and the ladder is inclined at an angle of 60 degree withthe groud . The length of ladder will be______ solve it.

Answers

Answered by brokerer
4

now to find out multiply 9.5 with 6 and the second digit has value but not used at sum like these so we will get 57m hope it was helpful

Answered by Anonymous
19

Given:-

  • Distance of foot of ladder is 9.5 m away from the wall = 9.5 m
  • Ladder is inclined at an angle of 60° from ground.

To Find:-

  • The length of the ladder.

Solution:-

In ∆ABC,

We know,

Cos C = \sf{\dfrac{Base}{Hypotenuse} = \dfrac{AB}{BC}}

Hence,

Cos60° = \sf{\dfrac{BC}{AC}}

From Trigonometric table we have,

  • Cos60° = \sf{\dfrac{1}{2}}

Putting the value,

\sf{\dfrac{1}{2} = \dfrac{9.5}{AC}}

\sf{:\implies AC = 9.5\times 2}

\sf{:\implies AC = 19\:m}

\sf{\therefore The\:length\:of\:the\:ladder\:is\:19\:m}

______________________________________

Explore More!!

Trigonometric Table is as follows:-

{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

Important points!!

  • Sinθ = \sf{\dfrac{Perpendicular}{Hypotenuse}}

  • Cosθ = \sf{\dfrac{Base}{Hypotenuse}}

  • Tanθ = \sf{\dfrac{Perpendicular}{Base}}

  • Cosecθ = \sf{\dfrac{Hypotenuse}{Perpendicular}}

  • Secθ = \sf{\dfrac{Hypotenuse}{Base}}

  • Cotθ = \sf{\dfrac{Base}{Perpendicular}}

______________________________________

Attachments:

pandaXop: Nice one bro :grin:
Similar questions