Physics, asked by singhsushmahdi8865, 11 months ago

The four arm of wheat stone bridge have the resistance 100 ohm 10 ohm 5ohm 60ohm .A galvanometer of 15ohm calculate the current through the galvanometer when a potential. Difference of 10 v is maintained acroos ac

Answers

Answered by njpanchal78
62

Answer:

The four arms of a Wheatstone bridge  have the following resistances:

AB = 100Ω, BC = 10Ω, CD = 5Ω, and DA = 60Ω.

A galvanometer of 15Ω resistance is connected across BD. Calculate the current through the galvanometer when a potential difference of 10 V is maintained across AC.

Explanation:

Considering the mesh ABDA, we have

100I1 + 15Ig – 60I2 = 0

or 20I1 + 3Ig – 12I2 = 0  ——(a)

Considering the mesh BCDB, we have

10 (I1 – Ig) – 5 (I2 + Ig) – 15Ig = 0

10I1 – 30Ig – 5I2 = 0

2I1 – 6Ig – I2 = 0 ——(b)

Considering the mesh ADCEA,

60I2 + 5 (I2 + Ig) = 10

65I2 + 5Ig = 10

13I2 + Ig = 2 ——(c)

Multiplying Eq. (b) by 10

20I1 – 60Ig – 10I2 = 0 ——(d)

From Eqs. (d) and (a) we have

63Ig – 2I2 = 0

I2 = 31.5Ig ——(e)

Substituting the value of I2 into Eq. [(c)], we get

13 (31.5Ig ) + Ig = 2

410.5 Ig = 2

Ig = 4.87 mA.

Answered by talasilavijaya
1

Answer:

The current through the galvanometer is 4.87mA

Explanation:

Given, the resistances of a Wheatstone bridge  

                       AB = 100\Omega , BC = 10\Omega , CD  = 5\Omega,  DA = 60\Omega

          resistance of galvanometer,  R= 15\Omega

          potential difference, V= 10 V

Applying Kirchchoff's Voltage law to the mesh ABDA,

                   100I_{1}  + 15I_{G} -60I_{2} = 0\implies 20I_{1}  + 3I_{G} -12I_{2} = 0         ...(1)

Applying Kirchchoff's Voltage law to the mesh BCDB,

                   10\big(I_{1}  -I_{G}\big) -15I_{G}-5\big(I_{2} +I_{G}\big)  = 0  

                             \implies 10I_{1}  -30I_{G} -5I_{2} = 0\implies \big2(10I_{1}  -30I_{G} -5I_{2}\big)= 0

                             \implies 20I_{1}  -60I_{G} -10I_{2}= 0                                         ...(2)

Substracting equation (2) from (1),

                            \implies 63I_{G} -2I_{2}= 0\implies2I_{2} =63I_{G}

                                                              \implies I_{2} =31.5I_{G}                           ...(3)

Applying Kirchchoff's Voltage law to the mesh ADCEA,

                  60I_{2} +5\big(I_{2} +I_{G}\big)  = 10

                       \implies65I_{2} +5I_{G}\big  = 10\implies13I_{2} +I_{G}\big  = 2

                       \implies I_{G}\big  = 2-13I_{2}

Using equation (3),

                    I_{G}  = 2-13\big(31.5I_{G}\big)\implies I_{G}  = 2-409.5I_{G}

     \implies 410.5I_{G}  = 2\implies I_{G}  = \frac{4}{410.5}

                                              =0.00487A=4.87mA

Hence, the current through the galvanometer is 4.87mA

Attachments:
Similar questions