The friction coefficient between the table and the block shown in figure is 0.2, find the tensions in the two strings.
Answers
Let the Tension in 15 kg block string be T and the tension in the string of 5 kg block be T'.
For 15 kg block,
15g - T = 15a
⇒ T = 15g - 15a
∴ T = 15(g - a)
For 5 kg block,
T' - 5g = 5a
⇒ T' = 5g + 5a
Now, for 5 kg block in between,
T - T' - Fric. = 5a
⇒ 15(g - a) - 5g - 5a - 0.2 × 5 × 10 = 5a
∴ 15g - 15a - 5g - 5a - 10 = 5a
⇒ 10g - 20a -5a = 10
⇒ 10g - 25a = 10
⇒ 25a = 90
⇒ a = 90/25
⇒ a = 18/5 m/s².
∴ T = 15(g - a)
⇒ T = 15(10 - 18/5)
⇒ T = 150 - 54
∴ T = 96 N.
T' = 5g + 5a
⇒ T' = 50 + 18 × 1
∴ T' = 68 N.
Hope it helps.
Let the Tension in 15 kg block string be T and the tension in the string of 5 kg block be T'.
For 15 kg block,
15g - T = 15a
⇒ T = 15g - 15a
∴ T = 15(g - a)
For 5 kg block,
T' - 5g = 5a
⇒ T' = 5g + 5a
Now, for 5 kg block in between,
T - T' - Fric. = 5a
⇒ 15(g - a) - 5g - 5a - 0.2 × 5 × 10 = 5a
∴ 15g - 15a - 5g - 5a - 10 = 5a
⇒ 10g - 20a -5a = 10
⇒ 10g - 25a = 10
⇒ 25a = 90
⇒ a = 90/25
⇒ a = 18/5 m/s².
∴ T = 15(g - a)
⇒ T = 15(10 - 18/5)
⇒ T = 150 - 54
∴ T = 96 N.
T' = 5g + 5a
⇒ T' = 50 + 18 × 1
∴ T' = 68 N.
Hope it helps.