Math, asked by Sactoku629, 15 days ago

The function is defined by f(x)= 2xcube + 7xsquare+7x+2, find the linear factors of f(x) and sketch the curve of fx

Answers

Answered by mathdude500
1

\large\underline{\sf{Given- }}

The function,

\rm :\longmapsto\:f(x) =  {2x}^{3} +  {7x}^{2} + 7x + 2

\large\underline{\sf{To\:Find - }}

1. The linear factors of f(x)

2. The graph of f(x).

\large\underline{\sf{Solution-}}

Given function is

\rm :\longmapsto\:f(x) =  {2x}^{3} +  {7x}^{2} + 7x + 2

can be regrouped as

\rm \:  =  \:  \: ( {2x}^{3} + 2) + ( {7x}^{2}  + 7x)

\rm \:  =  \:  \: 2( {x}^{3} + 1) + 7( {x}^{2}  + x)

We know,

\boxed{ \rm{  {x}^{3} +  {y}^{3} = (x + y)( {x}^{2} - xy +  {y}^{2})}}

So, using this identity, we get

\rm \:  =  \:  \: 2(x + 1)( {x}^{2} - x + 1) + 7x(x + 1)

On taking ( x + 1 ) common, we get

\rm \:  =  \:  \: (x + 1)(2 {x}^{2} - 2x + 2 + 7x)

\rm \:  =  \:  \: (x + 1)(2 {x}^{2}  + 5x + 2)

\rm \:  =  \:  \: (x + 1)(2 {x}^{2}  + 4x + x + 2)

\rm \:  =  \:  \: (x + 1)\bigg(2x(x + 2) + 1(x + 2)\bigg)

\rm \:  =  \:  \: (x + 1)(x + 2)(2x + 1)

Hence,

\boxed{ \bf \: { f(x) \:  = \:  (x + 1)(x + 2)(2x + 1) \: }}

To sketch the graph of f(x).

Let assume that

\boxed{ \bf \: { y \:  =  \: f(x) \:  = \:  (x + 1)(x + 2)(2x + 1) \: }}

Point of intersection with x - axis.

On x - axis, y = 0

\rm :\longmapsto\:(x + 1)(x + 2)(2x + 1) = 0

\bf\implies \:x =  - 1, \:  - 2, \:  -  \: \dfrac{1}{2}

Hence, Point of intersection with x- axis are

\begin{gathered}\boxed{\begin{array}{c|c} \bf x & \bf y \\ \frac{\qquad \qquad}{} & \frac{\qquad \qquad}{} \\ \sf  - 1 & \sf 0 \\ \\ \sf  - 2 & \sf 0 \\ \\ \sf  -  \dfrac{1}{2}  & \sf 0 \end{array}} \\ \end{gathered}

Point of intersection with y - axis

On y - axis, x = 0

\rm :\longmapsto\:y = (0 + 1)(0 + 2)(2(0) + 1)

\rm :\longmapsto\:y = 1 \times 2 \times 1

\bf\implies \:y = 2

So, point of intersection with y axis is ( 0, 2 ).

➢ Now draw a graph using the points

➢ See the attachment graph.

Attachments:
Similar questions