Math, asked by rajmili4178, 1 year ago

The general solution of the differential equation 9yy'+4x = 0 is

Answers

Answered by MaheswariS
0

\underline{\textbf{Given:}}

\mathsf{9\,y\,y'+4x=0}

\underline{\textbf{To find:}}

\textsf{The general solution of the differential equation}

\mathsf{9\,y\,y'+4x=0}

\underline{\textbf{Solution:}}

\textsf{We apply Variable separable method to find the}

\textsf{solution of the equation}

\mathsf{Consider,}

\mathsf{9\,y\,y'+4x=0}

\textsf{This can be written as}

\mathsf{9\,y\,\dfrac{dy}{dx}+4x=0}

\mathsf{9\,y\,\dfrac{dy}{dx}=-4x}

\mathsf{9\,y\,dy=-4x\,dx}

\textsf{Integrating on bothsides, we get}

\mathsf{\int\,9\,y\,dy=\int(-4x)\,dx}

\mathsf{9\int\,y\,dy=-4\int\,x\,dx}

\textsf{Using the formula}

\boxed{\mathsf{\int\,x^n\,dx=\dfrac{x^{n+1}}{n+1}+C}}

\mathsf{9\left(\dfrac{y^2}{2}\right)=-4\left(\dfrac{x^2}{2}\right)+C}

\mathsf{\dfrac{9y^2}{2}=-2x^2+C}

\mathsf{9y^2=-4x^2+2C}

\bf\,4x^2+9y^2=K\;\;\;\;\;\textsf{(Where K=2C)}

\underline{\textbf{Answer:}}

\textsf{Solution of the differential equation is}

\bf\,4x^2+9y^2=K

Similar questions