Math, asked by iSqlo, 11 months ago

The graph of a system of equations shows the solution to be at (-6, 2). Which two of the following equations could make up this system ? Make sure you choose both equations.

A. 2x - 3y = -6

B. 4x - y = 26

C. 3x + 2y = -14

D. x - y = -2

E. x + y = -4

Answers

Answered by abhishek49930
2

Answer:

a and d

Step-by-step explanation:

'A' and 'd' options

Answered by AditiHegde
1

The graph of a system of equations shows the solution to be at (-6, 2).

Given,

A point (-6, 2)

If a line passes through a point, then that point should satisfy the equation of that particular line and vice versa.

Given options are:

A. 2x - 3y = -6

2 (-6) - 3 (2) = -6

-12 - 6 = -6

-18 ≠ -6

B. 4x - y = 26

4 ( -6) - (2) = 26

-24 - 2 = 26

-26 ≠ 26

C. 3x + 2y = -14

3 (-6) + 2 (2) = -14

-18 + 4 = -14

-14 = -14

D. x - y = -2

(-6) - (2) = -2

-6 - 2 = -2

-8 ≠ -2

E. x + y = -4

(-6) + (2) = -4

-6 + 2  = -4

-4 = -4

In given options, the equations belonging to options C and E make up this system.

Similar questions