Accountancy, asked by f08, 3 months ago

the HCF and LCM of two numbers are 12 and 5040 , respectively . if one of the numbers is 144 , find the other number?​

Answers

Answered by Anonymous
0

Answer:

\begin{gathered}\frak{Given}\begin{cases}&amp; \sf{HCF\;of\;two\; Numbers =\frak{12}} \\ &amp;\sf{LCM\;of\;two\;numbers=\frak{5040}} \\ &amp;\sf{One\;of \: the \: number\;is=\frak{144}}\end{cases}\end{gathered}</p><p>

Need to find: The other number?

⠀⠀⠀⠀⠀⠀━━━━━━━━━━━━⠀⠀⠀⠀⠀

❍ Let the other required number be x respectively.

\underline{\bf{\dag} \:\mathfrak{As\;we\;know\: that\: :}}

\bf{\star}\;\boxed{\textsf{\textbf{\pink{Product\;of\;two\; Numbers\;=\;LCM $\times$ \: HCF}}}}⋆

Therefore,

⠀⠀⠀

\begin{gathered}:\implies\sf x \times 144 = 12 \times 5040\\\\\\:\implies\sf x \times 144 = 60480 \\\\\\:\implies\sf x = \cancel\dfrac{60480}{144} \\\\\\:\implies{\underline{\boxed{\pink{\frak{x = 420}}}}}\;\bigstar\end{gathered}

\therefore{\underline{\textsf{Hence, the other required number is {\textbf{420.}}}}}

⠀⠀⠀⠀⠀⠀⠀━━━━━━━━━━━

Answered by Anonymous
0

Answer:

420

Explanation:

144 × X = 12 × 5040

X = (12 × 5040)/144

X = 420

Similar questions