the HCF and LCM of two numbers are 12 and 72 respectively. if the sum of these numbers is 60,then one of the numbers will be
Answers
Answered by
27
Given:
Let the two numbers be x & y
x+y = 60..............(1)
H.C.F= 12, L.C.M= 72
H.C.F × L.C.M = PRODUCT OF 2 NUMBERS
12 × 72 = XY
864 = XY
X= 864/y..............(2)
Put this value of x in eq 1
x+y= 60
864/y + y= 60
(864+ y²)/y = 60
864 + y² = 60 y
y² -60y +864=0
y² -36y -24y+864=0
y(y-36)-24(y-36)=0
(y-36)(y-24)= 0
y-36= 0
y=36
y-24=0
y=24
Put the value of y= 36
x+y=60
x+ 36= 60
x= 60 -36= 24
x= 24
If y= 36, then x= 24
If y=24, then x= 36
Hence, the numbers are 36 & 24
==================================================================
Hope this will help you....
Let the two numbers be x & y
x+y = 60..............(1)
H.C.F= 12, L.C.M= 72
H.C.F × L.C.M = PRODUCT OF 2 NUMBERS
12 × 72 = XY
864 = XY
X= 864/y..............(2)
Put this value of x in eq 1
x+y= 60
864/y + y= 60
(864+ y²)/y = 60
864 + y² = 60 y
y² -60y +864=0
y² -36y -24y+864=0
y(y-36)-24(y-36)=0
(y-36)(y-24)= 0
y-36= 0
y=36
y-24=0
y=24
Put the value of y= 36
x+y=60
x+ 36= 60
x= 60 -36= 24
x= 24
If y= 36, then x= 24
If y=24, then x= 36
Hence, the numbers are 36 & 24
==================================================================
Hope this will help you....
Answered by
19
Solution :-
Let the two numbers be x ans y respectively.
HCF = 12 and LCM = 72
Then according to the question.
⇒ HCF*LCM = Product of the two numbers
x*y = 12*72
xy = 864 .......(1)
x + y = 60
x = 60 - y .......(2)
Putting the value of y = 60 - x in (1), we get
(60 - y)*y = 864
60y - y² = 864
⇒ y² - 60y + 864 = 0
⇒ y² - 36y - 24y + 864 = 0
⇒ y(y - 36) - 24(y - 36) = 0
⇒ y - 36 = 0 or y - 24 = 0
⇒ y = 36 or y 24
Putting the value of y in (2)
x = 60 - y x = 60 - y
x = 60 - 36 x = 60 - 24
x = 24 x = 36
If y = 36 then, x = 24
and, if y = 24 then x = 36
So, the two numbers are 36 and 24
Answer
Let the two numbers be x ans y respectively.
HCF = 12 and LCM = 72
Then according to the question.
⇒ HCF*LCM = Product of the two numbers
x*y = 12*72
xy = 864 .......(1)
x + y = 60
x = 60 - y .......(2)
Putting the value of y = 60 - x in (1), we get
(60 - y)*y = 864
60y - y² = 864
⇒ y² - 60y + 864 = 0
⇒ y² - 36y - 24y + 864 = 0
⇒ y(y - 36) - 24(y - 36) = 0
⇒ y - 36 = 0 or y - 24 = 0
⇒ y = 36 or y 24
Putting the value of y in (2)
x = 60 - y x = 60 - y
x = 60 - 36 x = 60 - 24
x = 24 x = 36
If y = 36 then, x = 24
and, if y = 24 then x = 36
So, the two numbers are 36 and 24
Answer
Similar questions