Math, asked by pradeep88, 1 year ago

the HCF and LCM of two numbers are 12 and 72 respectively. if the sum of these numbers is 60,then one of the numbers will be

Answers

Answered by nikitasingh79
27
Given:
Let the two numbers be x & y

x+y = 60..............(1)

H.C.F= 12, L.C.M= 72

H.C.F × L.C.M = PRODUCT OF 2 NUMBERS

12 × 72 = XY

864 = XY

X= 864/y..............(2)

Put this value of x in eq 1

x+y= 60

864/y + y= 60

(864+ y²)/y = 60

864 + y² = 60 y

y² -60y +864=0

y² -36y -24y+864=0

y(y-36)-24(y-36)=0

(y-36)(y-24)= 0

y-36= 0

y=36

y-24=0

y=24

Put the value of y= 36

x+y=60

x+ 36= 60

x= 60 -36= 24

x= 24

If y= 36, then x= 24

If y=24, then x= 36

Hence, the numbers are 36 & 24
==================================================================

Hope this will help you....
Answered by Golda
19
Solution :-

Let the two numbers be x ans y respectively.

HCF = 12 and LCM = 72

Then according to the question.

⇒ HCF*LCM = Product of the two numbers

x*y = 12*72

xy = 864 .......(1)

x + y = 60  

x = 60 - y .......(2)

Putting the value of y = 60 - x in (1), we get

(60 - y)*y = 864

60y - y² = 864

⇒ y² - 60y + 864 = 0

⇒ y² - 36y - 24y + 864 = 0

⇒ y(y - 36) - 24(y - 36) = 0

⇒ y - 36 = 0  or y - 24 = 0

⇒ y = 36 or y 24

Putting the value of y in (2)

x = 60 - y            x = 60 - y

x = 60 - 36          x = 60 - 24 

x = 24                 x = 36


If y = 36 then, x = 24

and, if y = 24 then x = 36

So, the two numbers are 36 and 24

Answer
Similar questions