Math, asked by studywithsarthak1232, 1 month ago

The HCF and LCM of two numbers is 18 and 1782 respectively. If one
number is 162, find the other number

Answers

Answered by Sauron
49

Answer:

The Second Number is 198.

Step-by-step explanation:

Given :

  • Highest Common Factor of the Numbers = 18
  • Lowest Common Multiple of the Numbers = 1782
  • One Number = 162

To Find :

  • The Second Number

Solution :

Consider the Second Number as x

\boxed{\sf{HCF \times LCM = Product\:of\:2\:numbers}}

\tt{\longrightarrow} \: 18 \times 1782 = 162 \times x

\tt{\longrightarrow} \:32076 = 162x

\tt{\longrightarrow} \: x = \dfrac{32076}{162}

\tt{\longrightarrow} \:x = 198

∴ The Second Number is 198.

____________________________

\mathfrak{\large{\underline{\underline{Verification :-}}}}

Place the value of x

\tt{\longrightarrow} \:18 \times 1782 = 162 \times 198

\tt{\longrightarrow\:HCF \times LCM = Product\:of\:2\:numbers}

\tt{\longrightarrow} \: 32076 = 32076

∴ The Second Number is 198.

Answered by itzgeniusgirl
131

\sf\small\underline{given \::-} \:

  • HCF = 18
  • lcm = 1782
  • one number = 162

\sf\small\underline{to \: find : -  \:  }

  • other number

\sf\small\underline{formula :  -  \: }

 \sf \: hcf \:  \times lcm \:  = product \: of \: two \: number \:

\sf\small\underline{solution:- \: }

let the other number be X

now by using formula :-

 \sf \: hcf \:  \times lcm \:  = product \: of \: two \: number \:  \\  \\  \\

 \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \: 18 \times 1782 = 16 \times x \\  \\  \\  \:  \:  \:  \:  \:  \:  \: \: :\implies\sf  x = 18 \times  \frac{1782}{162}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \: x =  \cancel \frac{32076}{162}  \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \: x = 198 \\  \\  \\

\sf\small\underline{verification : -  \:  }

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \:hcf \:  \times lcm = product \: of \: two \: number \:  \\  \\  \\   \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \:  \: 18 \times 1782 = 162 \times 198 \\  \\  \\  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: :\implies\sf  \:  \: 32076 = 32076 \\  \\  \\

∴ second number is 198

Similar questions