Math, asked by kingjaypatil39, 1 month ago

*The height and diameter of a conical flask is 15 cm and 14 cm respectively. Find the amount of water it can contain.* 1️⃣ 364.16 cm³ 2️⃣ 770 cm³ 3️⃣ 518.16 cm³ 4️⃣ 154 cm³​

Answers

Answered by sethrollins13
147

Given :

  • The height and diameter of a conical flask is 15 cm and 14 cm respectively .

To Find :

  • Amount of water it can contain .

Solution :

\longmapsto\tt{Height\:of\:flask(h)=15\:cm}

\longmapsto\tt{Radius\:of\:flask(r)=\dfrac{14}{2}=7\:cm}

Using Formula :

\longmapsto\tt\boxed{Volume\:of\:Cone=\dfrac{1}{3}\pi{{r}^{2}h}}

Putting Values :

\longmapsto\tt{\dfrac{1}{\cancel{3}}}\times\dfrac{22}{{\cancel{7}}}\times{{\cancel{7}}}\times{7}\times{{\cancel{15}}}

\longmapsto\tt{22\times{7}\times{5}}

\longmapsto\tt\bf{770\:{cm}^{3}}

So , The amount of water it can contain is 770 cm³ .

Option 2) 770 cm³ is Correct .

__________________

  • C.S.A of Cone = πrl
  • T.S.A of Cone = πr(l+r)
  • Volume of Cone = ⅓πr²h

Here :

  • r = radius of cone
  • h = height of cone
  • l = slant height of cone
  • π = 22/7 or 3.14

__________________


amitkumar44481: Great :-)
Answered by TrustedAnswerer19
101

2️⃣ 770 cm³ is the correct answer.

Step-by-step explanation:

Given,

★ The height of the conical flask is h = 15 cm

★ The diameter of the colical flask d = 14 cm

So, radius of the conical flask is r = 14/2 = 7 cm

To Find :

→ The amount of water it can contain .

Solution :

☞ Amount of water = Volume of the flask

We know that,

 \green{ \bf{Volume\:of\:Cone \:  \: V \:  \: =\dfrac{1}{3}\pi{{r}^{3}h}}} \\  \\  \bf \implies \: V =  \frac{1}{3}  \times  \frac{22}{7}  \times  {7}^{3}  \times 15 \\  =  \frac{1}{3}  \times   \frac{22}{7}  \times 343 \times 15 \\  = 770 \:  {cm}^{3}


amitkumar44481: Great :-)
Similar questions