Math, asked by veerpal99528, 7 months ago


The height and radius of a cone are 14 cm and 6 cm respectively. find the volume ofthe cone.​

Answers

Answered by MяƖиνιѕιвʟє
19

Given :-

  • The height and radius of a cone are 14 cm and 6 cm respectively.

To find :-

  • Volume of a cone

Solution :-

  • Height of cone = 14cm

  • Radius of cone = 6cm

As we know that

→ Volume of cone = ⅓ πr²h

Where " r " is radius and " h " is height of a cone.

According to the question

→ Volume of cone

→ ⅓ πr²h

Put the value of height and radius

→ ⅓ × 22/7 × (6)² × 14

→ ⅓ × 22 × 6 × 6 × 2

→ 22 × 2 × 6 × 2

→ 44 × 12

→ 528 cm³

Hence,

  • Volume of cone is 528cm³

Extra Information :-

  • T.S.A of cylinder = 2πrh + 2πr²
  • Volume of cylinder = πr²h
  • Volume of cube = a³
  • Volume of cone = ⅓ πr²h
  • Volume of cuboid = l × b × h
  • C.S.A of cone = πrl
  • T.S.A of cube = 6a²
  • C.S.A of cube = 4a²
  • T.S.A of cuboid = 2(lb + bh + lh)
  • C.S.A of cuboid = 2(l + b)h
Answered by Anonymous
6

Question :

‏‏‎ ‎

The height and radius of a cone are 14 cm and 6 cm respectively. find the volume of the cone.

‏‏‎ ‎

Answer :

‏‏‎ ‎

Given :

‏‏‎ ‎

  • Height of the cone = 14 cm

  • Radius of the cone = 6 cm

‏‏‎ ‎

To find :

‏‏‎ ‎

  • Volume of the cone

‏‏‎ ‎

Formula :

‏‏‎ ‎

Volume of the cone =  \frac{1}{3} π r^2 h cu units

‏‏‎ ‎

According to the question :

‏‏‎ ‎

Volume =  \frac{1}{3} π r^2 h cu\:units

‏‏‎ ‎

Substituting values of,

‏‏‎ ‎

  • Height = 14 cm

  • Radius = 6 cm

‏‏‎ ‎

We get :

‏‏‎ ‎

⟹ Volume =  \frac{1}{3} × \frac{22}{7} × r^2 × h × cu\:units

 \frac{1}{3} × \frac{22}{7} × 6^2 × 14

 \frac{1} {\cancel{3}} × \frac{22} {\cancel{7}} × \cancel{6}× 6 × \cancel{14}

 22 × 2 × 6 × 2

\bold{528 cm^3}

‏‏‎ ‎

So, It's Done !!

Similar questions