Math, asked by thakurdurga703, 3 months ago

The height of a cone is 15 cm. if it's volume is 500π cm^3, then find the radius of it's base​

Answers

Answered by Anonymous
0

 \\  \\ \large\underline{ \underline{ \sf{ \red{given:} }}}  \\  \\

  • Volume of cone is 500π³ cm³.

  • Height of cone is 15cm.

 \\  \\ \large\underline{ \underline{ \sf{ \red{to \: find:} }}}  \\  \\

  • Radius of base of the cone.

 \\  \\ \large\underline{ \underline{ \sf{ \red{solution:} }}}  \\  \\

 \\  \bigstar \boxed{ \bf \:volume \: of \: cone =  \frac{1}{3}\pi \:  {r}^{2} h  } \\  \\

Here ,

  • Volume of cone = 500πcm³

  • r = ?

  • h = 15cm

Putting values , we get...

 \\  \sf \: 500\pi =  \frac{1}{ \cancel3} \pi \:  {r}^{2} ( \cancel{15}) \\  \\  \sf \: 500 \cancel\pi =  \cancel\pi \:  {r}^{2} (5) \\  \\  \sf \: 500 =  {r}^{2} (5) \\  \\  \sf \:  {r}^{2}  =  \frac{500}{5}  \\  \\  \sf \:  {r}^{2}  = 100 \\  \\ \boxed{  \sf \: \pink{ r = 10cm}} \\  \\

Hence , radius of base is 10cm.

ㅤㅤㅤㅤㅤ

ㅤㅤㅤ

More to know :-

→ T.S.A of cone = πr(r+l)

→ C.S.A of cone = πrl

Here ,

  • r = radius of base
  • l = slant height
  • h = height of cone

Answered by SugarCrash
62

Answer :

\large \implies \mathbb{ r = 10 cm}

Solution :

Given :

  • Height of a cone, h = 15 cm.
  • Volume of cone = 500π cm³.

To Find :

  • Radius of it's base .

Lets solve ,

 \large \bigstar \boxed{\tt Volume \; of \: the \: cone = \frac{1}{3}\pi r^2 h}

Putting the values ,

\implies 500\pi = \frac{1}{3}\: \pi \: r^2 \: 15 \\ \\ \sf \implies 500 \pi= \frac{1}{\cancel{3}} \: \pi \: r^2 \:  \cancel{3}×5 \\ \\ \implies \sf  500\cancel{\pi} = r^2 \: \cancel{\pi} \: 5 \\ \\ \sf \implies r^2 = \frac{500}{5} \\ \\ \sf \implies r^2 = 100 \\ \\ \implies \underline{\boxed{\mathbb r = 10cm}}

Therefore,

Radius of the base of circle is 10 cm.

Similar questions