Math, asked by fatemapipewala52, 1 month ago

The height of a cone is 24 cm and the diameter of its base is 14 cm. Find the volume and curved surface area of a cone. O​

Answers

Answered by Eutuxia
21

Before, finding the answer. Let's find out we can find the answer.

  • In this question, we are asked to find the Volume and Curved Area of a Cone.
  • Before finding, we must first divide the base by 2.
  • Next, to find the Volume, we must use the formula of :

\boxed{ \tt Volume \: of \: a \: Cone =  \frac{1}{3} \pi r^2h }

  • Next, to find the Curved Surface Area of Cone, we must use the formula of :

\boxed{ \tt Curved \: surface \: area \: of \: Cone = \pi rl }

  • And here, we are taking

π = 3.14

__________________________

Given :

  • Height = 24 cm
  • Base = 14 cm

To find :

  • volume and curved surface area

Solution :

Diameter = radius × 2

  Radius = Diamter/2

              = 14/2

              = 7 cm

{ \tt Volume \: of \: a \: Cone =  \dfrac{1}{3} \pi r^2h }

                           { \tt  =  \dfrac{1}{3} \times 3.14 \times  7^2 \times 24 }

                           { \tt  =  \dfrac{1}{3} \times 3.14 \times  49 \times 24 }

                           { \tt  =  \dfrac{1}{3} \times 3.14 \times  1176}

                           { \tt  =  \dfrac{1}{3} \times 3692.64}

                           { \tt  =  \dfrac{3692.64}{3} }

                           { \tt = 1230.88}

Therefore, the Volume of the Cone is 1230.88 cm³.

               

{ \tt Curved \: surface \: area \: of \: Cone = \pi rl }

                                               { \tt = 3.14 \times  7 \times 24 }          

                                               { \tt = 3.14 \times  168 }

                                               {\tt = 527.52 cm^2}

Therefore, the Curved Surface Area of Cone is 527.52².

     

Similar questions