Math, asked by kuhusingh61691, 7 months ago

The height of a cone is 27. If its volume is 1570, find the radius of its base.

Answers

Answered by Anonymous
22

\setlength{\unitlength}{1 cm}\begin{picture}(0,0)  \thicklines\qbezier(1,0)(1.9,1)(3,0)\qbezier(1,0)(1.9, - 1)(3,0)\put(0.9,0){ \line(1,3){1}}\put(2.9,0){ \line( - 1,3){1}} \put(3,0){ \vector( 0,1){3}}\put( 3,0){ \vector( 0,  - 1){.1}} \put(3.1,1.5){ $\bf 27 \ cm$}\put(0.6, - 1.4){ $\boxed{ \bf{volume =1570 \ {cm}^{3}  }}$}\put(1,0){\vector(1,0){1}}\put(2,0){\vector( - 1,0){1}}\put(1.6,0.1){$\bf r$}\end{picture}

{ \tt { \large \underline {given}}}

 { \rm{the \: height \: of \: cone \: is  = 27 \: cm}}

b{ \rm{and \: its \: volume \: is = 1570 {cm}^{3} }}

{ \tt { \large \underline {to \: find}}}

{ \rm{ \to the \: radius \: of \: the \: base \: of \: cone}}

{ \tt { \large \underline {solution}}}

{ \rm{ \frac{1}{3}  \pi  {r}^{2} h = volume}}

{ \rm{ \implies \frac{1}{3}  \times  \frac{22}{7} \times   {r}^{2}  \times 27 = 1570}}

{ \rm{ \implies  {r}^{2}  =  \frac{1570 \times 3 \times 7}{1 \times 22 \times 27} }}

{ \rm{ {r}= 12 .90cm}}

{ \rm{ \large so \: the \: value \: of \: r = 12.90cm}}

──────────────────────────

{ \tt{ \large \underline \bold{more \: info}}}

{ \rm{(i)volume =  \frac{1}{3}  \pi {r}^{2} h}}

{ \rm{(ii)curve \: surface \: area =  \pi rl}}

{ \rm{total \: surface \: area =  \pi r(l + r)}}

Similar questions