Math, asked by hharshini983, 4 months ago

The height of a right circular cone whose radius is 3cm and slant height is 5cm will be

Answers

Answered by MoodyCloud
9

Answer:

  • Height of cone is 4 cm.

Step-by-step explanation:

Given :-

  • Radius of right circular cone is 3 cm.
  • Slant height of right circular cone is 5 cm.

To find :-

  • Height of right circular cone.

Solution :-

We know,

 \sf l =  \sqrt{ {r}^{2}  +  {h}^{2} }

By this,

 \sf h =  \sqrt{ {l}^{2} -  {r}^{2}  }

Where,

  • l is slant height, h is height and r is radius of cone.

Put the values :

 \sf \longrightarrow h =  \sqrt{ {(5)}^{2}  -  {(3)}^{2} } \\ \\

 \sf \longrightarrow h =  \sqrt{25 - 9} \\ \\

 \sf  \longrightarrow h =  \sqrt{16} \\ \\

 \sf \longrightarrow \boxed{ \bold{h = 4}} \\ \\

Therefore,

Height of cone is 4 cm.

___________________________________

More formulas of cone :

• Total surface area of cone is πr² + πrl.

• Volume of cone is 1/2 πr²h

• Lateral surface area of cone is πrl

In above formulas r is radius, h is height and l is slant height of cone.

Answered by TheEternity
15

Answer :-

Height = 4 \: cm

Step-by-step explanation

GIVEN :-

  • Radius of a right circular cone = 3cm
  • Slant height of a right circular cone = 5cm

TO FIND :-

  • Height of the right circular cone

FORMULA USED :-

height \:  =   \sqrt{ {(slant \: height)}^{2} -  {(radius)}^{2}  }  \\

SOLUTION :-

Let,

'h' = Height of the right circular cone

'r' = Radius of a right circular cone

'l' = Slant height of a right circular cone

According to the question :-

height \:  =   \sqrt{ {(slant \: height)}^{2} -  {(radius)}^{2}  }  \\ ⟹ \: h \:  =   \sqrt{ {(l)}^{2} -  {(r)}^{2}  }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ ⟹ \:  h = \sqrt{ {5}^{2}  -  {3}^{2} }   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ ⟹ \: h =  \sqrt{25 - 9}   \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \: \\ ⟹ \:h =  \sqrt{16}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ ⟹ \: h = 4 \: cm \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

RELATED FORMULAS TO CONE

✰ \: curved \: surface \: area = \pi \: rl  \:  \:  \:  \:  \:  \:  \:  \: \:   \:  \:  \:  \:  \:  \:  \:  \: \\ ✰ \: area \: of \: circular \: base \:  = \pi \:  {r}^{2} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:   \\ ✰ \: total \: surface \: area \:  =  \: \pi \: rl \:  + \pi {r}^{2} \:  \:  \:  \:  \:  \:   \\ ✰ \: lateral \: surfce \: area \:  = \pi \: r \:  \sqrt{ {h}^{2} +  {r}^{2}  }  \\ ✰ \: slant \: height \:  =  \sqrt{ {h}^{2}  +  {r}^{2} }  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Here,

h = height \: of \: the \: cone \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ l = slant \: height \: of \: the \: cone \\ r = radius \: of \: the \: cone \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Attachments:
Similar questions