The height of an equalateral triangle measures 9root 3 cm.find it's area ?
Answers
Answered by
1
Let the side be x
by Pythagoras theorem,
x²=(x/2)²+(9√3)²
x²=x²/4 +(81*3)
x²-x²/4 ={243}
(4x²-x²)/4 =243
3x²=243*4
x²=972/3
x²=324
x=√324
x=18cm
Now,
Area =a²(√3/4)
Area =18*18*(√3/4)
Area =324(√3/4)
Area of equilateral triangle =81√3 cm²
I hope this will help you
-by ABHAY
by Pythagoras theorem,
x²=(x/2)²+(9√3)²
x²=x²/4 +(81*3)
x²-x²/4 ={243}
(4x²-x²)/4 =243
3x²=243*4
x²=972/3
x²=324
x=√324
x=18cm
Now,
Area =a²(√3/4)
Area =18*18*(√3/4)
Area =324(√3/4)
Area of equilateral triangle =81√3 cm²
I hope this will help you
-by ABHAY
dhruvsh:
nice answer !!
Answered by
1
Consider an equilateral triangle ABC having altitude AD from vertex A to side BC.
∴ AD = 9√3 cm.
Let AB=BC=AC=x
We know that in an equilateral triangle altitude from any vertex will bisect the opposite side.
∴ BD + CD = BC
∴ 2BD = BC
∴2BD = x ................(∵ length of all sides is x.)
∴ BD = x/2.
Now, In Δ ABD
By Pythagoras Theorem, we have
AB² = AD²+BD²
∴ x² = (9√3)² + (x/2)²
∴ x² = 243 + x²/4
∴ x² - x²/4 = 243
∴ 3x² / 4 = 243
∴ x² = 243 * 4 / 3
∴ x² = 324
∴ x = √324
∴ x = +- 18
However the length of the side cannot be negative so we will take the length of the side of the triangle as +18 cm.
Now , we know the formula for the area of the equilateral triangle
Area = √3/4 * (18)² = √3 / 4 * 324 = √3 * 81
= 81√3 cm²
≈ 140.13 cm²
∴ The area of the equilateral triangle is approximately 140.13 cm².
# Dhruvsh
Hope this helps you !!
∴ AD = 9√3 cm.
Let AB=BC=AC=x
We know that in an equilateral triangle altitude from any vertex will bisect the opposite side.
∴ BD + CD = BC
∴ 2BD = BC
∴2BD = x ................(∵ length of all sides is x.)
∴ BD = x/2.
Now, In Δ ABD
By Pythagoras Theorem, we have
AB² = AD²+BD²
∴ x² = (9√3)² + (x/2)²
∴ x² = 243 + x²/4
∴ x² - x²/4 = 243
∴ 3x² / 4 = 243
∴ x² = 243 * 4 / 3
∴ x² = 324
∴ x = √324
∴ x = +- 18
However the length of the side cannot be negative so we will take the length of the side of the triangle as +18 cm.
Now , we know the formula for the area of the equilateral triangle
Area = √3/4 * (18)² = √3 / 4 * 324 = √3 * 81
= 81√3 cm²
≈ 140.13 cm²
∴ The area of the equilateral triangle is approximately 140.13 cm².
# Dhruvsh
Hope this helps you !!
Similar questions