Math, asked by secretchallenger, 9 months ago

the height of an equilateral triangle measurs 12 cm. Find the area of triangle correct to 2 places of decimal​. (use\sqrt{3}as 1.732)

Answers

Answered by harsha6690
1

Answer :

80.24m^2

Step-by-step explanation:

hope this helps

thank you

Attachments:
Answered by Anonymous
6

Answer:

339.48cm^2

Explanation:

Figure :

\setlength{\unitlength}{20} \begin{picture}(6, 6)  \put(2, 2){\line(1, 0){8}}\put(6, 2){\line(0, 1){4}}\put(2, 2){\line(1, 1){4}}\put(10, 2){\line( - 1, 1){4}}\put(5.6,1.5 ){ $ \bf a $ }\put(3,4 ){ $ \bf a $ }\put(8.5,4 ){ $ \bf  a $ }\put(6.2, 3.5){ $ \bf h $ }\put(2, 1.5){ $ \bf A $ }\put(10, 1.5){ $ \bf  B$ }\put(6,6 ){ $ \bf C $ }\put(3, 0) {\bf {}}\end{picture}

Given :

  • Height of the equilateral triangle.

To Find :

  • Area of triangle correct to 2 places of decimal​.

Solution :

Height(h) => 12cm

The height is perpendicular to the side AB and it divides it in two halves, which are a2 long.

Use Pythagorean therom here

\implies a^{2} =12^{2}+\bigg(\dfrac{\ a^{2}}{2}\bigg)

\implies a^{2}=144+\dfrac{\ a^{2}}{2}

\implies \dfrac{4a^{2}-a^{2}}{4}=144

\implies \dfrac{3a^{2}}{4}=144

\implies 3a^{2}=144\times4

\implies 3a^{2}=576

\implies a=576\div3

\implies a^{2}=192

\sf{Area\ of\ equilateral\ triangle =}\dfrac{\sqrt{3}}{\ 4}}\times a^{2}

\implies \dfrac{\sqrt{3}}{\ 4}}\times192

\implies \sqrt{3} \times 49

\implies 339.48

∴ Area of the given equilateral triangle is 339.48cm^{2}

Similar questions