Math, asked by Rhea0810, 5 months ago

The height of the tower is 100m. When the angle of elevation of the sun changes from 30 to 45 the shadow of the tower becomes x meters less. The value of x

Answers

Answered by Anonymous
5

\tt\huge\underline{\underline{GIVEN}}

  • Height of tower is 100m
  • Angle changed from 30° to 45° when sun's position changed.
  • Shadow became x m less when sun's position changed.

‎ ‎ ‎ ‎ ‎ ‎

\tt\huge\underline{\underline{TO\: FIND}}

  • Value of x

‎ ‎ ‎ ‎ ‎ ‎

\tt\huge\underline{\underline{SOLUTION}}

Let the length of shadow be S when angle is 30°

When angle is 45° then side will be S-xm.

‎ ‎ ‎ ‎

In ∆ACD

 \sf Tan \:  30°= \dfrac{100 \: m}{s}

 \large\sf  \implies\dfrac{1}{ \sqrt{3} } = \dfrac{100 \: m}{s}

Now cross multiply

\sf\large\implies S=100√3m

‎ ‎ ‎ ‎ ‎ ‎

‎ ‎ ‎ ‎ ‎ ‎

 \sf When\: angle\: is \:45°\: then\: height \:will\: be:

\sf\large\implies S-x m

\sf\large\implies 100√3-x m

‎ ‎ ‎ ‎ ‎ ‎

In ∆BCD

 \sf\implies Tan \:  45° =  \dfrac{100 \: m}{100 \sqrt{3} - x }

‎ ‎ ‎ ‎ ‎ ‎

 \sf\large\implies 1 =  \dfrac{100 \: m}{100 \sqrt{3} - x }

Cross multiply

 \sf\large\implies100√3-x=100m

 \sf\large\implies100√3-100=x

 \sf\large\implies100(√3-1)=x

 \sf\large\implies100(1.732-1)=x

 \sf\large\implies100(0.732)=x

\sf\large\implies 732m=x

‎ ‎ ‎ ‎

 \sf \huge\underline \blue{Additional \:  information}

TRIGONOMETRY RATIOS

\Large{ \begin{tabular}{|c|c|c|c|c|c|} \cline{1-6} \theta & \sf 0^{\circ} & \sf 30^{\circ} & \sf 45^{\circ} & \sf 60^{\circ} & \sf 90^{\circ} \\ \cline{1-6} $ \sin $ & 0 & $\dfrac{1}{2 }$ & $\dfrac{1}{ \sqrt{2} }$ & $\dfrac{ \sqrt{3}}{2}$ & 1 \\ \cline{1-6} $ \cos $ & 1 & $ \dfrac{ \sqrt{ 3 }}{2} } $ & $ \dfrac{1}{ \sqrt{2} } $ & $ \dfrac{ 1 }{ 2 } $ & 0 \\ \cline{1-6} $ \tan $ & 0 & $ \dfrac{1}{ \sqrt{3} } $ & 1 & $ \sqrt{3} $ & $ \infty $ \\ \cline{1-6} \cot & $ \infty $ &$ \sqrt{3} $ & 1 & $ \dfrac{1}{ \sqrt{3} } $ &0 \\ \cline{1 - 6} \sec & 1 & $ \dfrac{2}{ \sqrt{3}} $ & $ \sqrt{2} $ & 2 & $ \infty $ \\ \cline{1-6} \csc & $ \infty $ & 2 & $ \sqrt{2 } $ & $ \dfrac{ 2 }{ \sqrt{ 3 } } $ & 1 \\ \cline{1 - 6}\end{tabular}}

NOTE-Kindly visit web to see diagram.

Attachments:

Anonymous: Amazing answer!
Anonymous: Thanks :)
Sen0rita: Fantabulous! :D
Anonymous: Thanks ♡
Answered by koominhoseok14
0

Answer:

value \: of \: x \: is \: 732m

Similar questions