Math, asked by AnishR19, 10 months ago

the HM between 2 numbers is 16/5, their AM is A and GM is G. if 2A+G^2=26, then the numbers are?​

Answers

Answered by CopyThat
33

Answer:

a\;=\;8, b\;=\;2

Step-by-step explanation:

Given H.M of a and b is \frac{2ab}{a+b}\;=\;\frac{16}{5}

a+b\;=\;\frac{5ab}{8}\;\rightarrow(1)

Given 2A+G^2\;=\;26

2(\frac{a+b}{2})+ab\;=\;26

(a+b)+ab\;=\;26

\frac{5ab}{8}+ab\;=\;26

ab\;=\;16

From (1),

a+b\;=\;\frac{5}{8}(16)

a+b\;=\;10\;\rightarrow(2)

(a-b)^2\;=\;(a=b)^2-4ab\;=100-64\;=36

(a-b)\;=\;6\;\rightarrow(3)

Solve (2) and (3),

a\;=\;8, b\;=\;2

Similar questions