The hypotenuse of a right angle triangle is 13 cm if its base is 7 cm more than its altitude find the base and altitude
Answers
Solution :-
Hypotenuse of right angled triangle = 13 cm
Let the altitude of the right angled triangle be x cm
Base is 7 cm more than its altitude = (x + 7) cm
By Pythagoras theorem
⇒ (Base)² + (Altitude)² = (Hypotenuse)²
⇒ (x + 7)² + x² = 13²
⇒ x² + 7² + 2(x)(7) + x² = 169
⇒ 2x² + 49 + 2(7x) - 169 = 0
⇒ 2x² + 2(7x) - 120 = 0
⇒ 2(x² + 7x - 60) = 0
⇒ x² + 7x - 60 = 0
Splitting the middle term
⇒ x² + 12x - 5x - 60 = 0
⇒ x(x + 12) - 5(x + 12) = 0
⇒ (x - 5)(x + 12) = 0
⇒ x - 5 = 0 or x + 12 = 0
⇒ x = 5 or x = - 12
x ≠ - 12 because lengths cannot be negative
⇒ x = 5
Altitude = x = 5 cm
Base = (x + 7) = 5 + 7 = 12 cm
Therefore 12 cm and 5 cm are measurements of base and altitude respectively.
Answer:
=
=
Step-by-step explanation:
Given:-
- Hypotenuse = 13 cm
- Base = Altitude + 7
- Base = ?
- Altitude = ?
Let altitude be x cm. So base = ( x + 7) cm
● Altitude = x = 5 cm
● Base = (x + 7)= (5 + 7) = 12 cm