the hypotenuse of a right angled triangle is 25 CM if one of the remaining two sides is 15 cm find the length of its third side
Answers
Answered by
129
using Pythagoras theorum
![{hypt}^{2} = {base }^{2} + {height}^{2} \\ {25}^{2} = {15}^{2} + {height}^{2} \\ 625 = 225 + {height}^{2} \\ {height}^{2} = 625 - 225 \\ {height}^{2} = 400 \\ heigh = \sqrt{400} = 20 {hypt}^{2} = {base }^{2} + {height}^{2} \\ {25}^{2} = {15}^{2} + {height}^{2} \\ 625 = 225 + {height}^{2} \\ {height}^{2} = 625 - 225 \\ {height}^{2} = 400 \\ heigh = \sqrt{400} = 20](https://tex.z-dn.net/?f=+%7Bhypt%7D%5E%7B2%7D++%3D++%7Bbase+%7D%5E%7B2%7D++%2B++%7Bheight%7D%5E%7B2%7D++%5C%5C+++%7B25%7D%5E%7B2%7D++%3D++%7B15%7D%5E%7B2%7D++%2B++%7Bheight%7D%5E%7B2%7D++%5C%5C+625+%3D+225+%2B++%7Bheight%7D%5E%7B2%7D++%5C%5C+++%7Bheight%7D%5E%7B2%7D++%3D+625+-+225+%5C%5C++%7Bheight%7D%5E%7B2%7D++%3D+400+%5C%5C+heigh+%3D++%5Csqrt%7B400%7D++%3D+20)
the lenght of third side is 20cm.
the lenght of third side is 20cm.
Answered by
25
The length of the third side is 20 cm.
Solution :-
★Hypotenuse of the right angled triangle
(h) = 25 cm
★Length of one of the side
(a) = 15 cm
★Assume the length third side be be 'c' cm
Using Pythagoras theorem :-
⇒ h² = a² + c²
⇒ (25)² = (15)² + c²
⇒ 625 = 225 + c²
⇒ 625 - 225 = c²
⇒ 400 = c²
⇒ √400 = c
⇒ 20 = c
⇒ c = 20
Hence
Length of the third side = 20
Similar questions