Math, asked by piyush793, 1 year ago

the hypotenuse of a right triangle is 65 CM. if one of its side is 60 cm find the length of the other side

Answers

Answered by Tomboyish44
13

------------------------------

Hola Mate! ❤❤

------

Consedering the given equation, we can find the other side easily using Pythagoras Theorem,

Given that,

Hypotenuse → 65cm

One side → 60 cm

(picture given below for better understanding)

Now we use the theorem

AC² = AB² + BC²

(Here AB is the given side, AC is the hypotenuse and BC is to be found)

65² = 60² + BC²

4225 = 3600 + BC²

4225 - 3600 = BC²

625 = BC²

\sqrt{625} = BC

∴ BC = 25

The required side's value is 25cm

------------------------------------------------------------------

Hope it helps!

#BeBrainly


Attachments:
Answered by Mercidez
6
 \: \: \: \: \: \: \: \: \: \: Your \: \: \: \: Answer \\ - - - - - - - - - - - - -

given \\ \\ H ypotenuse = 65 \: cm \\ \\ One \: \: side = 60 \: cm \\

Let \: \: the \: \: other \: \: side \: \: be \: \: x \: cm.

Now,\: \: By \: \: Pythagoras \: \: Theorem \\

 \: \: \: \: \: \: 65 {}^{2} = 60 {}^{2} + x {}^{2} \\ \\ = > x {}^{2} = 65 {}^{2} - 60 {}^{2} \\ \\ = > x {}^{2} = 4225 - 3600 \\

 = > x {}^{2} = 625 \\ \\ = > x = \sqrt{625} \\ \\ = > x = 25

Hence, \: \: the \: \: length \: \: of \: \: other \: \\ side \: \: is \: \: 25 \: cm
Similar questions