The inequality
2x-3-x²
>0 is satisfied by
x²+x+3
(A) all values of x
(C) only positive values of x
(B) no values of x
(D) only negative values of x
Answers
Hi Dude
Given that,
(2x-3-x^2)/(x^2+x+3)>0
there are two ways the quotient a/b can be>0
like a>0 , b>0
or
a<0 , b<0
then
(2x-3-x^2)>0
(x^2+x+3)>0
&
(2x-3-x^2)<0
(x^2+x+3)<0
Then x belongs to ø, R,
Then x belongs to ø
plzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzzz mark my answer as Brainlist answer please
Answer:
(B). no values of x
For explaination , please refer to the attachment .
Note :
★ If we consider a quadratic polynomial ,
f(x) = ax² + bx + c , then ;
• If D < 0 and a < 0 => f(x) < 0 for every
x € R .
• If D < 0 and a > 0 => f(x) > 0 for every
x € R .
• If D > 0 , then f(x) = 0 exactly at two values of x € R .
• If D = 0 , then f(x) = 0 exactly at one value of x € R .
★ If a/b > 0 , then there exist two cases ;
• a > 0 and b > 0
• a < 0 and b < 0
★ If a/b < 0 , then there exist two cases ;
• a > 0 and b < 0
• a < 0 and b > 0