Math, asked by mondira228, 2 months ago

The integer N is greater than 120 When N is divided by 28 the remainder is 3 When N is divided by 120 the remainder is 3 Find the least value of N. You must show your working

Answers

Answered by mathdude500
10

\large\underline{\sf{Solution-}}

Given that,

☆ When integer N is divided by 28, its leaves the remainder 3.

and

☆ When integer N is divided by 120, it also leaves the remainder 3.

☆ It implies, the integer N should be

\bf :\longmapsto\:N  \: = \:  LCM \: (28, \:  120) \:  +  \: 3

So,

☆ Let find the LCM of 28, 120 using prime factorization.

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 28}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:28 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:14 \:\:}} \\\underline{\sf{7}}&\underline{\sf{\:\:7\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

 \green{\bf :\longmapsto\:Prime \: factorization \: of \: 28 =  {2}^{2} \times 7}

\red{\bf :\longmapsto\:Prime \: factorization \: of \: 120}

\begin{gathered}\begin{gathered}\begin{gathered} \:\: \begin{array}{c|c} {\underline{\sf{2}}}&{\underline{\sf{\:\:120 \:\:}}}\\ {\underline{\sf{2}}}& \underline{\sf{\:\:60 \:\:}} \\\underline{\sf{2}}&\underline{\sf{\:\:30\:\:}} \\ {\underline{\sf{3}}}& \underline{\sf{\:\:15 \:\:}} \\ {\underline{\sf{5}}}& \underline{\sf{\:\:5\:\:}}\\\underline{\sf{}}&{\sf{\:\:1 \:\:}} \end{array}\end{gathered}\end{gathered}\end{gathered}

\red{\bf :\longmapsto\:Prime \: factorization \: of \: 120 =  {2}^{3} \times 5 \times 3}

So,

\blue{\bf:\longmapsto\:LCM(28, 120)}

 \rm \:=  \: \: {2}^{3} \times 3 \times 5 \times 7

 \rm \:=  \: \: 8  \times 15 \times 7

 \rm \:=  \: \: 120 \times 7

 \rm \:=  \: \:840

\blue{\bf:\longmapsto\:LCM(28, 120) = 840}

Hence,

\bf :\longmapsto\:N  \: = \:  LCM \: (28, \:  120) \:  +  \: 3

\bf :\longmapsto\:N  \: = \:  840 \:  +  \: 3

\bf :\longmapsto\:N  \: = \:  843 \:  \:

Similar questions