Math, asked by khusig2878, 9 months ago

The integral π/³ ∫π/₆ sec²/³ xcosec⁴/³ x dx
is equal to
(A) (3)⁵/⁶ – (3)²/³
(B) (3)⁵/³ – (3)¹/³
(C) (3)⁷/⁶ – (3)⁵/⁶
(D) (3)⁴/³ – (3)¹/³

Answers

Answered by 16shots
5

\huge\bold{Answer}

Option (A) is correct

Answered by jitendra420156
0

The correct option is option (C).

Therefore \int ^{\frac\pi3}_{\frac\pi6 }sec^\frac{2}{3}x \ cosec^\frac{4}{3}x \ dx =3^ \frac76-3^\frac56

Step-by-step explanation:

Let

I = \int ^{\frac\pi3}_{\frac\pi6 }sec^\frac{2}{3}x \ cosec^\frac{4}{3}x \ dx

 = \int ^{\frac\pi3}_{\frac\pi6 }\frac{1}{cos^\frac{2}{3}x \ sin^\frac{4}{3}x }\ dx

 = \int ^{\frac\pi3}_{\frac\pi6 }\frac{\frac{1}{cos^2x}}{\frac{cos^\frac{2}{3}x \ sin^\frac{4}{3}x}{cos^2x} }\ dx         [ dividing the numerator and denominator by \frac{1}{cos^2x}]

  = \int ^{\frac\pi3}_{\frac\pi6 } \frac{sec^2x}{\frac {sin^\frac43x}{cos^\frac43x}} \ dx

  = \int ^{\frac\pi3}_{\frac\pi6 } \frac{sec^2x}{tan^\frac43x}} \ dx

Let tan x =z, sec^2x dx = dz upper limit when x=\frac\pi 3 then z= tan \frac\pi3=\sqrt 3 and lower limit whenx=\frac \pi 6 , then z= tan \frac\pi6=\frac1{\sqrt 3}

    =\int_\frac{1}{\sqrt3}^{\sqrt3}\frac{1}{z^\frac43} dz

   =\int_\frac{1}{\sqrt3}^{\sqrt3}{z^{-\frac43} dz

    =[\frac{z^{-\frac43+1}}{-\frac43+1}}]_\frac{1}{\sqrt3}^\sqrt3

   = -3[z^{-\frac13}]_\frac1{\sqrt3}^\sqrt3

   =-3[(\sqrt3)^{-\frac13} - (\frac1{\sqrt3})^{-\frac13}]

    =-3[3^{-\frac{1}{6}} - 3^{\frac{1}{6}}]

   =-3^{1-\frac16} +3^{1+\frac16}

  =-3^\frac56 +3^ \frac76

   =3^ \frac76-3^\frac56

Therefore \int ^{\frac\pi3}_{\frac\pi6 }sec^\frac{2}{3}x \ cosec^\frac{4}{3}x \ dx =3^ \frac76-3^\frac56

 

   

 

Similar questions