Math, asked by spiderman143spider, 11 months ago

The integrating factor of differential equation dy/dx(1+x) -xy = 1-x

Answers

Answered by shadowsabers03
2

Given,

\displaystyle\longrightarrow\sf{(1+x)\dfrac{dy}{dx}-xy=1-x}

Dividing each term by \displaystyle\sf{(1+x),}

\displaystyle\longrightarrow\sf{\dfrac{dy}{dx}-\dfrac{x}{1+x}\cdot y=\dfrac{1-x}{1+x}}

Comparing it with the standard linear differential equation \displaystyle\sf{\dfrac{dy}{dx}+Py=Q,} we get,

\displaystyle\longrightarrow\sf{P=-\dfrac{x}{1+x}}

\displaystyle\longrightarrow\sf{\int P\ dx=-\int\dfrac{x}{1+x}\ dx}

\displaystyle\longrightarrow\sf{\int P\ dx=-\int x\cdot\dfrac{1}{1+x}\ dx}

\displaystyle\longrightarrow\sf{\int P\ dx=-x\ln|1+x|+\int\ln|1+x|\ dx}

\displaystyle\longrightarrow\sf{\int P\ dx=-x\ln|1+x|+(1+x)\ln|1+x|-(1+x)+c}

\displaystyle\longrightarrow\sf{\int P\ dx=\ln|1+x|-1-x+c}

\displaystyle\longrightarrow\sf{\int P\ dx=\ln\left|\dfrac{1+x}{e^{1+x-c}}\right|}

Hence the integrating factor is,

\displaystyle\longrightarrow\sf{I.F.=e^{\int P\ dx}}

\displaystyle\longrightarrow\sf{I.F.=e^{\ln\left|\frac{1+x}{e^{1+x-c}}\right|}}

\displaystyle\longrightarrow\sf{\underline{\underline{I.F.=\dfrac{1+x}{e^{1+x-c}}}}}

\displaystyle\longrightarrow\sf{I.F.=\dfrac{(1+x)e^c}{e^{1+x}}}

Let \displaystyle\sf{e^c=C.} Then,

\displaystyle\longrightarrow\sf{\underline{\underline{I.F.=\dfrac{(1+x)C}{e^{1+x}}}}}

Similar questions