Math, asked by mahathi3337, 7 months ago

The intercepts of a straight line on the axes of coordinates are a and b. If p is the length of the perpendicular drawn from the origin to the line, write the value of p in terms of a and b....




please do it fast..​

Answers

Answered by MaheswariS
34

\underline{\textsf{Given:}}

\textsf{The intercepts of a straight line on the axes of coordinates are a and b}

\textsf{p is the length of the perpendicular drawn from the origin to the line}

\underline{\textsf{To find:}}

\textsf{The value of p in terms of a and b}

\underline{\textsf{Solution:}}

\textsf{The equation of the given line}

\textsf{can be written in intercept form as}

\mathsf{\dfrac{x}{a}+\dfrac{y}{b}=1}.....(1)

\textsf{The same line can be written in normal form as}

\mathsf{x\,cos\alpha+y\,sin\alpha=p}

\textsf{where}\,\mathsf{\alpha}\,\textsf{is angle inclined by the perpendicular to x axis}

\textsf{Divide bothsides by p}

\mathsf{\dfrac{x\,cos\alpha}{p}+\dfrac{y\,sin\alpha}{p}=1}

\mathsf{\dfrac{x}{\dfrac{p}{cos\alpha}}+\dfrac{y}{\dfrac{p}{sin\alpha}}=1}......(2)

\textsf{Comparing (1) and (2), we get}

\mathsf{\dfrac{p}{cos\alpha}=a\;\;\;\&\;\;\;\dfrac{p}{sin\alpha}=b}

\mathsf{\dfrac{p}{a}=cos\alpha\;\;\;\&\;\;\;\dfrac{p}{b}=sin\alpha}

\textsf{We know that,}\,\boxed{\mathsf{cos^2\alpha+sin^2\alpha=1}}

\implies\mathsf{\dfrac{p^2}{a^2}+\dfrac{p^2}{b^2}=1}

\implies\mathsf{p^2(\dfrac{1}{a^2}+\dfrac{1}{b^2})=1}

\implies\mathsf{p^2(\dfrac{b^2+a^2}{a^2b^2})=1}

\implies\mathsf{p^2=\dfrac{a^2b^2}{a^2+b^2}}

\implies\boxed{\mathsf{p=\displaystyle\sqrt{\dfrac{a^2b^2}{a^2+b^2}}}}

\underline{\textsf{Answer:}}

\textsf{The value of p is}

\mathsf{\displaystyle\sqrt{\dfrac{a^2b^2}{a^2+b^2}}}}

Similar questions