The internal and external diameter of a hollow hemispherical vessel are 26cm and 30 cm find the coay of painting the vessel all over at 21 paise perm2
Answers
Answered by
2
Internal diameter = 26 cm
=> Internal radius = 26/2 = 13 cm
Similarly, outer radius = 15 cm
We know that,
SA of Hemisphere = 2πr²
=> Internal SA = 2π(13²)
Outer SA = 2π(15²)
Since, it's a hollow hemisphere, a ring will also be formed on the top. So, it will also be painted.
Area of ring = πR² - πr²
Where, R = outer radius and r = inner radius.
=> π(15² - 13²)
= π(15 - 13)(15 + 13)
=> 2π(28)
Now total SA =
2π(13²) + 2π(15²) + 2π(28)
=> 2π(13² + 15² + 28)
=> 2π(169 + 225 + 28)
= 2π(422) m²
So cost of painting = 21 paise per m²
= 2π(422) × 21 paise
= 2 × 22/7 × 422 × 21
= 55704 paise
=> 55704/100 rupees
= ₹557.04
Answer :- 557.04
=> Internal radius = 26/2 = 13 cm
Similarly, outer radius = 15 cm
We know that,
SA of Hemisphere = 2πr²
=> Internal SA = 2π(13²)
Outer SA = 2π(15²)
Since, it's a hollow hemisphere, a ring will also be formed on the top. So, it will also be painted.
Area of ring = πR² - πr²
Where, R = outer radius and r = inner radius.
=> π(15² - 13²)
= π(15 - 13)(15 + 13)
=> 2π(28)
Now total SA =
2π(13²) + 2π(15²) + 2π(28)
=> 2π(13² + 15² + 28)
=> 2π(169 + 225 + 28)
= 2π(422) m²
So cost of painting = 21 paise per m²
= 2π(422) × 21 paise
= 2 × 22/7 × 422 × 21
= 55704 paise
=> 55704/100 rupees
= ₹557.04
Answer :- 557.04
Similar questions