the internal and external radii of a hemispherical vessel are 28cm and 35cm respectively...find....the total surface area and the volume of the material of the vessel
Answers
Answered by
0
The external radius = R = 35 m
The internal radius = r = 28 m
The external C.S.A. = 2*pi*R*R = 7700 m^2
The internal C.S.A. = 2*pi*R*r = 4928 m^2
The bottom surface area = pi (R*R - r*r) = 1386 m^2
The T.S.A. = 7700+4928+1386 = 14014 m^2
The volume of material required = (2/3)*pi*(R*R*R - r*r*r) = (2/3)*pi*(35-28)(35*3+28*35+28*28) = 131516/3 = 43838.6666..
= 43838.67 (approx.) m^3
The TSA is 14014 m^2 and volume is 43838.67 m^3...
The internal radius = r = 28 m
The external C.S.A. = 2*pi*R*R = 7700 m^2
The internal C.S.A. = 2*pi*R*r = 4928 m^2
The bottom surface area = pi (R*R - r*r) = 1386 m^2
The T.S.A. = 7700+4928+1386 = 14014 m^2
The volume of material required = (2/3)*pi*(R*R*R - r*r*r) = (2/3)*pi*(35-28)(35*3+28*35+28*28) = 131516/3 = 43838.6666..
= 43838.67 (approx.) m^3
The TSA is 14014 m^2 and volume is 43838.67 m^3...
Similar questions