Chemistry, asked by Ataraxia, 3 months ago

The ionization constant of benzoic acid is 6.46 × 10^–5 and Ksp for silver benzoate is 2.5 × 10^–13. How many times is silver benzoate more soluble in a buffer of pH 3.19 compared to its solubility in pure water?​

Answers

Answered by diajain01
69

{\boxed{\underline{\tt{\orange{Required  \: Answer:-}}}}}

 \displaystyle \sf{C_6H_5COO \:  \:  Ag \:   \: is   \: \: Approximately  \: \:  3.32  \: \:  times \:  \:  more  \: \:  soluble  \: \:  in  \: \:  low  \: \:  pH  \:  \: Solution}

★EXPLANATION:-

pH is 3.19,

 \displaystyle \sf{[H_3O^+]= 6.46  \times  10^ {-4}M}

 \displaystyle \sf{C_6H_5COOH + H_2O \longrightarrow \: C_6H_5COO^-  + H_3O}

 \displaystyle \sf{K_a =  \frac{[C_6H_5COO^-][ H_3 { O}^{ + } ]}{[C_6H_5COOH]} }

 :\longrightarrow \displaystyle \sf{ \frac{[C_6H_5COOH]}{[C_6H_5COO^-]}  =  \frac{ H_3 {O}^{ + } }{K_a} } \\  \\   :\longrightarrow\displaystyle \sf{ \frac{6.46 \times  {10}^{ - 4} }{6.46 \times  {10}^{ - 5}  }  = 10}

 \sf{Let \:  \:  The \:  \:  solubility  \:  \: of \:  \:  C_6H_5COO  \:  \: Ag \:  \:  be \:  \:  x  \:  \:  \frac{mol}{l} }

: \longrightarrow\displaystyle\sf{[Ag^+] = x }\\\\  \longrightarrow\displaystyle\sf{[C_6H_5COOH]  + [C_6H_5COO^-] = x} \\  \\  :\longrightarrow\displaystyle\sf{10[C_6H_5COOH]  + [C_6H_5COO^-] = x} \\  \\  :\longrightarrow\displaystyle\sf{ [C_6H_5COO^-] =  \frac{x}{11} }

: \longrightarrow \displaystyle \sf{K_{sp}[Ag^+][C_6H_5COO^-]} \\  \\  :\longrightarrow \displaystyle \sf{2.5 \times  {10}^{ - 13}  = x (\frac{x}{11} )} \\  \\  :\longrightarrow \displaystyle \sf{1.66 \times  {10}^{ - 6}  \frac{mol}{l} }

Thus, the solubility of silver benzoate in a pH of 3.19 solution is 1.66 × 10^-6 mol/L.

let the solubility of C6 H5CooAg be x' mol/L

Then,

: \longrightarrow \displaystyle \sf{[Ag^+] = x' M  \:  \: and \:  \:  [CH_3COO^-]=x ' M } \\  \\ :\longrightarrow \displaystyle \sf{ K_{sp} = [Ag^+][CH_3COO^-]} \\  \\  :\longrightarrow \displaystyle \sf{K_{sp} =  {(x' )}^{2} } \\  \\ :\longrightarrow \displaystyle \sf{x' =  \sqrt{K_{sp}} =  \sqrt{2.5 \times  {10}^{ - 13} }   = 5 \times  {10}^{ - 7} \frac{mol}{l}  } \\  \\ :\longrightarrow \displaystyle \sf{ \therefore \:  \frac{x}{x'} =  \frac{1.66 \times  {10}^{ - 6} }{5 \times  {10}^{ - 7} }   =  \pink{3.32}}

So, it will 3.32 times more soluble in a low pH solution.

Answered by abhishek917211
1

Since pH=3.19,

(H3O^+)=6.46×10^-4M

C6H5COOH+H2O↔C6H5COO^-+H3O

Kα(C6H5COO^-)(H3O^+)/(C6H5COOH)

(C6H5COOH/C6H5COO^-)=(H3O^+)/Kα=6.46×10^-4/6.46×10^-5=10

Let the solubility of C6H5COOAg be x mol/L

Then,

(Ag^+)=x

(C6H5COOH)+(C6H5COO^-)+=x

10(C6H5COO^-)+(C6H5COO^-)=x

(C6H5COO^-)=X/11

Ksp(Ag^+)(C6H5COO^-)

2.5×10^-13=x(x/11)

x=1.66×10^-6mol/L

Thus the solubility of silver benzoate in a pH 3.19 solution is 1.66×10^-6mol/L

Now,let the solubility of C6H5COOAg be x'mol/L

Then,(Ag^+)=x'M & (CH3COO^-)=x'M

Ksp=(Ag^+)(CH3COO^-)

Ksp=(x')²

x'=√Ksp=√2.5×10^-13=5×10^-7mol/L

Therefore x/x=1.66×10^-6/5×10^-7=3.32

Hence,C6H5COOAg is approximately 3.317 times more soluble in low pH solution.

Similar questions