Chemistry, asked by amanreddypeddireddy, 10 months ago

The kinetic energy of an electron is 5×10-5 eV. What is the wavelength of the de Broglie wave associated with it? (1eV = 1.602 x 10-19 J)

Answers

Answered by Anonymous
31

Solution :

Given:

✏ Kinetic energy of an electron = 5×\sf10^{-5} eV

To Find:

✏ de-Broglie wavelength associated with electron.

Formula:

✏ Formula of de-Broglie wavelength in terms of kinetic energy and mass of particle is given by

  \red{\circ} \:  \underline{ \boxed{ \bold{ \sf{ \blue{ \lambda =  \dfrac{h}{ \sqrt{2m(KE)}}}}}}} \:  \red{ \circ}

Terms indication:

\lambda denotes wavelength

✏ h denotes plank's constant

✏ m denotes mass of particle

✏ KE denotes kinetic energy associated with particle

Conversation:

✏ KE = 5×\sf10^{-5} eV = 8×\sf10^{-24} J

Calculation:

  \mapsto \:  \lambda =  \dfrac{6.626 \times  {10}^{ - 34} }{ \sqrt{2 \times 9.109 \times  {10}^{ - 31} \times 8 \times  {10}^{ - 24}  }  }  \\  \\  \mapsto \sf \:  \lambda =  \dfrac{6.626 \times  {10}^{ - 34} }{ \sqrt{14.574 \times  {10}^{ - 54} } }  \\  \\  \mapsto \sf  \:  \lambda =  \frac{6.626 \times  {10}^{ - 34} }{3.817 \times  {10}^{ - 27} }  \\  \\  \mapsto \sf \: \lambda = 1.735 \times  {10}^{ - 7}  \\  \\  \mapsto \:  \underline{ \boxed{ \bold{ \sf{ \orange{ \large{ \lambda = 173.5 \: nm}}}}}} \:  \red{ \bigstar}

Answered by Anshika17410
2

Answer:

Kinetic energy of an electron = 5×\sf10^{-5}10

−5

eV

⏭ To Find:

✏ de-Broglie wavelength associated with electron.

⏭ Formula:

✏ Formula of de-Broglie wavelength in terms of kinetic energy and mass of particle is given by

\red{\circ} \: \underline{ \boxed{ \bold{ \sf{ \blue{ \lambda = \dfrac{h}{ \sqrt{2m(KE)}}}}}}} \: \red{ \circ}∘

λ=

2m(KE)

h

⏭ Terms indication:

✏ \lambdaλ denotes wavelength

✏ h denotes plank's constant

✏ m denotes mass of particle

✏ KE denotes kinetic energy associated with particle

⏭ Conversation:

✏ KE = 5×\sf10^{-5}10

−5

eV = 8×\sf10^{-24}10

−24

J

⏭ Calculation:

\begin{lgathered}\mapsto \: \lambda = \dfrac{6.626 \times {10}^{ - 34} }{ \sqrt{2 \times 9.109 \times {10}^{ - 31} \times 8 \times {10}^{ - 24} } } \\ \\ \mapsto \sf \: \lambda = \dfrac{6.626 \times {10}^{ - 34} }{ \sqrt{14.574 \times {10}^{ - 54} } } \\ \\ \mapsto \sf \: \lambda = \frac{6.626 \times {10}^{ - 34} }{3.817 \times {10}^{ - 27} } \\ \\ \mapsto \sf \: \lambda = 1.735 \times {10}^{ - 7} \\ \\ \mapsto \: \underline{ \boxed{ \bold{ \sf{ \orange{ \large{ \lambda = 173.5 \: nm}}}}}} \: \red{ \bigstar}\end{lgathered}

↦λ=

2×9.109×10

−31

×8×10

−24

6.626×10

−34

↦λ=

14.574×10

−54

6.626×10

−34

↦λ=

3.817×10

−27

6.626×10

−34

↦λ=1.735×10

−7

λ=173.5nm

Similar questions