Math, asked by Anonymous, 10 months ago

The Kinetic energy of an object
of mass, in moving with a velocity of 5ms-1 is 25 J. What will be its kinitic energy when
its velocity is doubled ? what will be its kinitic energy when its velocity is increased three times ?
No Spam...​

Answers

Answered by Anonymous
42

\large{\underline{\underline{\mathrm{\blue{Question-}}}}}

The Kinetic energy of an object of mass m, in moving with a velocity of 5 m/s is 25 J. What will be its kinitic energy when its velocity is doubled ? what will be its kinitic energy when its velocity is increased three times?

\large{\underline{\underline{\mathrm{\blue{Answer-}}}}}

★ When velocity is doubled, kinetic energy becomes 100 J.

★ When velocity is doubled, kinetic energy becomes 225 J.

\large{\underline{\underline{\mathrm{\red{Explanation-}}}}}

\begin{lgathered}\bold{Given} \begin{cases}\sf{Kinetic\:energy\:=\:25\:J} \\ \sf{Velocity\:=\:5\:m/s}\\ \sf{mass\:=\:m}\end{cases}\end{lgathered}

To find :

  • Kinetic energy when velocity is doubled
  • Kinetic energy when velocity is increased three times.

Solution :

We know that,

\large{\boxed{\rm{\red{Kinetic\:Energy\:=\:\dfrac{1}{2}\:mv^2}}}}

putting the given values,

\mapsto \rm{25\:=\:\dfrac{1}{2}\:m\:(5)^2}

\mapsto \rm{25\:=\:\dfrac{1}{2}\:m\:25}

\mapsto m = 2 kg.

\bold{\underline{\rm{\green{When\:velocity\:is\:doubled-}}}}

Put Velocity = 5 × 2 => 10 m/s

\rm{Kinetic\:energy\:=\:\dfrac{1}{\cancel{2}}\:\times\:\cancel{2}\:\times\:(10)^2}

\mapsto \rm{Kinetic\:energy\:=\:100\:J}

\therefore When velocity is doubled, kinetic energy becomes 100 J.

\bold{\underline{\rm{\green{When\:velocity\:increases\:three\:times-}}}}

Put velocity = 5 × 3 => 15 m/s

\rm{Kinetic\:energy\:=\:\dfrac{1}{\cancel{2}}\:\times\:\cancel{2}\:\times\:(15)^2}

\mapsto \rm{Kinetic\:energy\:=\:225\:J}

\therefore When velocity is doubled, kinetic energy becomes 225 J.

Answered by Nereida
25

\huge\star{\green{\underline{\mathfrak{Answer :-}}}}

\bf{Given}\begin{cases}\sf{Kinetic\:energy\:of\:the\:object = 25 \:J}\\\sf{Velocity = 5 m{s}^{-1}}\\ \end{cases}

\bf{To\:Find}\begin{cases}\sf{K.E.\:when\:velocity\:is\:doubled}\\\sf{K.E.\:when\:velocity\:tripled}\\ \end{cases}

\bf {SOLUTION :-}

We know that,

\huge {\boxed {\tt K.E. = \dfrac {1}{2}m {v}^{2}}}

So,

\hookrightarrow {\tt 25 = \dfrac {1}{2}m \times{5}^{2}}}

\hookrightarrow {\tt 25 = \dfrac {1}{2}m \times 25}}

\hookrightarrow {\tt 1 = \dfrac {1}{2}m }}

\hookrightarrow {\tt m = 2\:kg}}

WHEN VELOCITY IS DOUBLED,

So, v = 5 × 2 = 10 m/s

\hookrightarrow \tt \therefore {K.E. =\dfrac {1}{\cancel {2}}\times \cancel {2}\times {10}^{2}}

\hookrightarrow \tt \therefore {K.E. = 100\:J}

WHEN VELOCITY IS TRIPLED,

So, v = 5 × 3 = 15 m/s

\hookrightarrow \therefore {\tt {K.E. =\dfrac {1}{\cancel {2}}\times \cancel{2} \times {15}^{2}}}

\hookrightarrow \tt \therefore {K.E. = 225\:J}

\rule{200}2

\huge {\tt KINETIC\:ENERGY\: :-}

It is the energy of an object possessed during motion.

\huge {\boxed {\tt K.E. = \dfrac {1}{2}m {v}^{2}}}

\huge {\tt POTENTIAL\:ENERGY\: :-}

It is the energy stored in the object.

\huge {\boxed {\tt P.E. = mgh}}

\rule{200}2

Similar questions