The largest distance shortest distance of the earth from the sun are a and
b. The perpendicular distance from the major axis of the orbit drawn from the sun will be
Answers
is it about longitude and latitude
Velocity of planet in terms of Eccentricity -
V_{a}=\sqrt{\frac{GM}{a}\left ( \frac{1-e}{1+e} \right )}
V_{p}=\sqrt{\frac{GM}{a}\left ( \frac{1+e}{1-e} \right )}
V_{A}= Velocity of planet at apogee
V_{p}= Velocity of perigee
- wherein
Eccentricity (e) = \frac{c}{a}
r_{p}=a-c
r_{a}=a+c
The position of a particle moving in an elliptical orbit is represented as
r=\frac{l}{1+e \cos \Theta }
l is perpendicular distance of particle from focus and e is eccentricity of ellipse
r_{1}=\frac{l}{1-e}\ \: \: and\ \: \: \: r_{2}=\frac{l}{1+e}
\Rightarrow 1-e=\frac{l}{r_{1}}\ \: \: and\ \: \: 1+e = \frac{l}{r_{2}}
\Rightarrow 2=l\left ( \frac{1}{r_{1}} + \frac{1}{r_{2}}\right )\Rightarrow l=\frac{2r_{1}r_{2}}{r_{1}+r_{2}}
Option 1)
\left ( \frac{r1+r2 }{4}\right )
This is incorrect option
Option 2)
\left ( \frac{r1+r2 }{r1-r2}\right )
This is incorrect option
Option 3)
\left ( \frac{2r1r2}{r1+r2} \right )
This is correct option
Option 4)
\left ( \frac{r1+r2}{3} \right )
This is incorrect option
Hope u help this