Math, asked by deepakupadhyay151288, 10 months ago

the largest possible right circular cone is cut out of a cube of Edge 8 centimetre what is the volume of cone ​

Answers

Answered by bhargavipolampally
1

Answer:

hope this answer help u

Attachments:
Answered by Anonymous
3

\huge{\underline{\underline{\red{\mathfrak{Answer :}}}}}

\LARGE{\underline{\bf{Given :}}}

Edge of cube = 8 cm

Radius of cone = 4 cm (As it is cutted from a cube of side 8 cm)

Height of cone = 8 cm(As it is cutted from a cube of 8 cm)

_____________________________

\LARGE{\underline{\bf{To \: Find :}}}

Volume of the cone

________________________

\LARGE{\underline{\bf{Solution :}}}

We know that,

\Large{\boxed{\boxed{\purple{\sf{Volume = \frac{1}{3} \pi r^2 h}}}}}

(Putting Values)

 \sf{volume =  \frac{1}{3} \times  \frac{22}{7} \times ( {4})^{2} \times 8   } \\  \\  \sf{volume \:  =  \frac{22}{21} \times 16 \times 8 } \\  \\  \sf{volume \:  =  \frac{2816}{21} } \\  \\  \sf{volume = 134.09 \:  {cm}^{3} }

\large{\boxed{\green{\sf{Volume = 134.09 cm^3}}}}

\rule{200}{2}

Additional information :

\boxed{</p><p>\begin{minipage}{7 cm}</p><p></p><p>Formula of cone \\ \\</p><p></p><p>$Volume = \frac{1}{3} \pi r^2 h\\ \\</p><p></p><p>Total \: Surface \: area = \pi r^2 + \pi r \sqrt{h^2 + r^2}\\ \\</p><p></p><p>Lateral \:  surface \:  area \:  = \pi r \sqrt {r^2 + h^2}$</p><p></p><p>\end{minipage}}

\rule{200}{2}

#answerwithquality

#BAL

Similar questions