Math, asked by mangaivenkatesh25, 10 months ago

The LCM of two numbers is 12 times their HCF.The sum of HCF and LCM is 403.If one number is 93.Find the other

Answers

Answered by rohitrs0908
1

Answer:

Step-by-step explanation:

Let the HCF be x

LCM = 12x

x + 12x = 403

13x = 403

x = 403/13 = 31

HCF = 31

LCM = 372

HCF * LCM = Product of two numbers.

Let the other number be y

31*372 = 93*y

y = (31*372)/93

y = 31*4 = 124.

Answered by Mysterioushine
28

\huge\rm\underline\blue{GIVEN:}

  • \large\rm{LCM\:of\:two\:Numbers\:=\:12(HCF)}
  • \large\rm{HCF+LCM\:=\:403}
  • \large\rm{One\:of\:the\:number\:=\:93}

\huge\rm\underline\blue{TO\:FIND:}

  • \large\rm{Other\:Number}

\huge\rm\underline\blue{SOLUTION:}

\large\rm{Let\: HCF\rightarrow'x'}

\large\rm{Let \:LCM\rightarrow'y'}

\large\rm{\implies{x+y\:=\:403}}

\large\rm{\implies{y\:=\:403-x----eq(1)}}

\large\rm{y\:=\:12x---eq(2)}

\large\rm{In\:both\:equations\:LHS\:is\:equal\:so\:RHS\:can\:be\:equated}

\large\rm{\implies{12x=\:403-x}}

\large\rm{\implies{13x\:=\:403}}

\large\rm{\implies{x\:=\:\frac{403}{13}}}

\large\rm{\implies{x\:=\:31}}

\large\rm{From\:eq(1)\:y\:=\:403-31}

\large\rm{\implies{y\:=\:372}}

\large\rm{\therefore{HCF\:=\:31}}

\large\rm{LCM\:=\:372}

\large\rm{Let\:the\:other\:Number\:be\:'a'}

\large\rm\bold{\boxed{Product\:of\:two\:numbers\:=\:LCM(HCF)}}

\large\rm{\implies{a(93)\:=\:(372)(31)}}

\large\rm{\implies{a\:=\:\frac{(372)(31)}{93}}}

\large\rm{\implies{a\:=\:124}}

\large\rm{\therefore{The\:other\:Number\:=\:124}}

Similar questions