Math, asked by 13920kavya, 18 days ago

the least positive value of x satisfying 2 power (3+3cosx+3cos2x+3cos3x+....)= 2power6 will be where |cosx | <1)

Answers

Answered by mathdude500
5

Appropriate Question :-

The least positive value of x satisfying

\rm \:  {2}^{3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3} x + \cdots}  \:  =  \:  {2}^{6} \: such \: that \:  |cosx| &lt; 1 \: is \cdots\cdots\\

\color{green}\large\underline{\sf{Solution-}}

Given expression is

\rm \:  {2}^{3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3} x + \cdots}  \:  =  \:  {2}^{6} \: \\

Now, Consider

\rm \: 3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3}x + \cdots \\

Its an infinite GP series with

  • First term, a = 3

  • Common ratio, r = cosx

We know,

Sum of infinite GP series with first term a, common ratio r is given by

\color{green}\boxed{ \rm{ \: \: S_ \infty  \:  =  \:  \frac{a}{1 \:  -  \: r}  \:  \:  \:  \: provided \: that \:  |r| &lt; 1 \: }}

So,

\rm \: 3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3}x + \cdots =  \frac{3}{1 -cosx}  \\

Now, given expression

\rm \:  {2}^{3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3} x + \cdots}  \:  =  \:  {2}^{6} \: \\

can be rewritten as

\rm \: 3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3}x + \cdots\cdots = 6 \\

can be further rewritten as

\rm \: \dfrac{3}{1 - cosx} = 6

\rm \: 1 - cosx = \dfrac{3}{6} \\

\rm \: 1 - cosx = \dfrac{1}{2} \\

\rm \: - cosx = \dfrac{1}{2} - 1 \\

\rm \: - cosx = \dfrac{1 - 2}{2} \\

\rm \: - cosx = \dfrac{ - 1}{2} \\

\rm \:  cosx = \dfrac{ 1}{2} \\

\rm \:  cosx = cos\dfrac{\pi}{3} \\

\rm\implies \:x =\dfrac{\pi}{3} \\

Hence, Least positive value of x satisfying the equation

\color{green}\boxed{\rm{{2}^{3 + 3cosx +  {3cos}^{2}x +  {3cos}^{3} x + \cdots}  = {2}^{6} \: such \: that \:  |cosx| &lt; 1 \: is  \dfrac{\pi}{3}}} \\

Similar questions