Math, asked by mk0779842, 8 months ago

The lengh of a line segment LM is 13 units .L is at( -2,4)and M is at (10,y). Find the positive value of y

Answers

Answered by sonal1305
4

{\huge{\underline{\sf {\underline{\orange {Answer}}}}}}

\: \:

y = 9

\: \:

{\huge{\underline{\sf {\underline{\orange{Explanation :}}}}}}

\: \:

{\huge{\underline{\sf {\blue{Given :}}}}}

\: \:

LM = 13 units

L = (-2 , 4)

M = (10 , y)

\: \:

{\huge{\underline{\sf {\blue{To \:\: Find}}}}}

\: \:

Positive value of y

\: \:

{\huge{\underline{\sf {\blue{Formula \:\: used : }}}}}

\: \:

\sf \: for \: points \: ({x}_{1}{y}_{1}) \: and \: ({x}_{2}{y}_{2})the distance between them is \sf \sqrt{{({x}_{2} - {x}_{1})}^{2}  +  {({y}_{2} - {y}_{1})}^{2} }

\: \:

{\huge{\underline{\sf {\blue{Solution : }}}}}

\: \:

\sf \: {x}_{1} =  - 2 ,\: {x}_{2}  \: =  \: 10, \: {y}_{1}  \: = \: 4 ,\:  {y}_{2}  \: =  \: y

\: \:

\sf \: Distance =  \sqrt{ [{10 - ( - 2)]}^{2}   +  {(y - 4)}^{2} }

\sf13 =  \sqrt{ {(12)}^{2}  +  {y}^{2} - 8y + 16 }

\sf ({13})^{2}  = 144 +  {y}^{2}  - 8y + 16

\sf169 =  {y}^{2}  - 8y + 160

\sf {y}^{2}  - 8y - 9 = 0

\sf {y}^{2}  - 9y - + y - 9 = 0

\sf \: y(y - 9) + 1(y - 9) = 0

\sf \: (y + 1)(y - 9) = 0

\: \:

either,

y + 1 = 0

y = - 1

\: \:

or,

y - 9 = 0

y = 9

\: \:

We will ignore y = - 1 since the question requires only positive value of y.

Answered by asma9t7
2

Answer:

Step-by-step explanation:

D= \sqrt{(x_{2}-x_{1})^2+(y_{2}-y_{1})^2 }

13=\sqrt{(10-(-2))^2+(y-4)^2}

13^{2} =12^{2}+(y-4)^2\\169-144=(y-4)^2\\\sqrt{25} =\sqrt{(y-4)^2}\\5=y-4\\y=9

Similar questions