Physics, asked by khyatidatt5, 9 months ago

The length and breadth of a rectangle are 5.7 plus minus 0.1 cm and 3.4 plus minus 0.2 cm calculate area of the rectangle with error limits

Answers

Answered by Anonymous
7

\Large{\underline{\underline{\mathfrak{\bf{Question}}}}}

The length and breadth of a rectangle are ( 5.7 ± 0.1 ) cm and ( 3.4 ± 0.2 ) cm calculate area of the rectangle .

\Large{\underline{\underline{\mathfrak{\bf{Solution}}}}}

\Large{\underline{\mathfrak{\bf{\blue{Given}}}}}

  • Length = (5.7 ± 0.1)
  • Breadth = ( 3.4 ± 0.2)

\Large{\underline{\mathfrak{\bf{\blue{Find}}}}}

  • Area of rectangle

\Large{\underline{\underline{\mathfrak{\bf{Explanation}}}}}

First, For (+ ve ) sign

Then,

  • Length = 5.7 + 0.1 = 5.8
  • Breadth = 3.4 + 0.2 = 3.6

\small\red{\boxed{\sf{\blue{\:Area_{Rectangle}\:=\:(Length)\times (Breadth)}}}} \\ \\ \mapsto\sf{\:Area_{Rectangle}\:=\:(5.8)\times (3.6)} \\ \\ \mapsto\sf{\orange{\:Area_{Rectangle}\:=\:20.88\:cm^2\:\:\:\:\:\:Ans}}

Second, For ( -ve ) Sign,

Then,

  • Length = 5.7 - 0.1 = 5.6
  • Breadth = 3.4 - 0.2 = 3.2

\small\red{\boxed{\sf{\blue{\:Area_{Rectangle}\:=\:(Length)\times (Breadth)}}}} \\ \\ \mapsto\sf{\:Area_{Rectangle}\:=\:(5.6)\times (3.2)} \\ \\ \mapsto\sf{\orange{\:Area_{Rectangle}\:=\:17.92\:cm^2\:\:\:\:\:\:Ans}}

Thus:-

When,

  • Length = 5.8
  • breadth = 3.6

\mapsto\sf{\green{\:Area_{Rectangle}\:=\:20.88\:cm^2}}

When,

  • Length = 5.6
  • breadth = 3.2

\mapsto\sf{\green{\:Area_{Rectangle}\:=\:17.92\:cm^2}}

Attachments:
Answered by abcdefghi76
1

Answer:

17.92 cm² is answer of question

Similar questions