Math, asked by angel7719, 1 day ago

The length and the breadth of a cuboid are 14 cm and 6 cm, respectively. Find the height of the cuboid if the volume of the cuboid is 756 cm³. ​

Answers

Answered by mrharish947
3

Given:-

  • Length(l) =14cm
  • breadth(b) =6cm
  • volume=756cm³
  • height(h) =?

Solution:-

Volume of cuboid=l×b×h

756=14×6×h

756=84×h

h=756÷84

h=9cm

So, the height of cuboid is 9cm

pls mark me as brainlist

Answered by spbankingandsscserie
30

Explanation -:

Given :

  • Length of a cuboid = 14 cm
  • Breadth of a cuboid = 6 cm
  • Volume of a cuboid = 756 cm³

To Find :

  • Height of the cuboid

Solution :

Let us assume the height as 'x'

 \large \boxed{ \rm{ Volume \:  of \:  a  \: cuboid  = Length × Breadth × Height }}

 \small\rm\bf{14 \times 6 \times x = 756}

⤍ \small\rm{84 \times x = 756}

⤍  \small\rm{84x = 756}

⤍ \small\rm{x = \cancel\frac{756}{84} = 9 }

 \small\fbox { \rm{x = 9cm}}

CHECK :

Volume of a cuboid = length × breadth × height

→ 14 × 6 × 9 cm

→ 756 cm³

Hence, proved

 \rule{70mm}{2pt}

 \large\fbox{ \fbox{ \rm{Additional  information}}}

• \:  \small\rm{Perimeter  \: of  \: a  \: cuboid = 4(length + breadth + height)}

• \:  \small\rm{Diagonal \:  of \:  a \:  cuboid = \sqrt{ (  {length}^{2} +  {breadth}^{2}  +  {height}^{2}  }}

• \:  \small\rm{Total  \: Surface  \: Area  \: of  \: a  \: Cuboid = 2 (lb + bh + lh)}

• \:  \small\rm{Total  \: surface  \: area  \: of  \: a  \: cube = 6( {side)}^{2}}

• \:  \small\rm{ Volume  \: of \:  a  \: cube = {side}^{3} }

 \rule{70mm}{2pt}

✯ NOTE :

L = Length

B = Breadth

H = Height

Similar questions