Math, asked by rehan1ansari, 6 months ago

The length and the breadth of a rectangle are in the ratio 2:1. If the length is increased by 2 cm and breadth by 3 cm then the ratio of the perimeter of the new rectangle to the perimeter of the original rectangle is 4/3. Find the dimensions of the original rectangle.

Answers

Answered by ViratMutha
0

Answer:

Ratio of length and breadth of a rectangle is 2:1

When 2 is added to length and 3 is added to breadth then ratio of perimeter of new rectangle to original rectangle is 4:3

\:\:

\red{\underline \bold{To \: Find:}}

ToFind:

\:\:

The dimensions of rectangle.

\:\:

\large{\orange{\underline{\tt{Solution :-}}}}

Solution:−

\:\:

Let length be 'l'

Let breadth be 'b'

\:\:

\purple{\underline \bold{According \: to \: the \ question :}}

Accordingtothe question:

\:\:

\purple\longrightarrow⟶ \sf \dfrac { l } { b } = \dfrac { 1 } { 2 }

b

l

=

2

1

\:\:

\sf \longmapsto l = 2b⟼l=2b -------(1)

\:\:

\underline{\bold{\texttt{Length of new rectangle:}}}

Length of new rectangle:

\:\:

\purple\longrightarrow⟶ \sf l + 2l+2

\:\:

\underline{\bold{\texttt{Breadth of new rectangle:}}}

Breadth of new rectangle:

\:\:

\purple\longrightarrow⟶ \sf b + 3b+3

\:\:

\underline{\bold{\texttt{Perimeter of original rectangle:}}}

Perimeter of original rectangle:

\:\:

\sf \longmapsto 2(l + b)⟼2(l+b)

\:\:

\underline{\bold{\texttt{Perimeter of new rectangle:}}}

Perimeter of new rectangle:

\:\:

\sf \longmapsto 2[(l + 2) + (b + 3)]⟼2[(l+2)+(b+3)]

\:\:

As per the question,

\:\:

\sf \longmapsto \dfrac { 10 + 2l + 2b } { 2l + 2b } = \dfrac { 4 } { 3 }⟼

2l+2b

10+2l+2b

=

3

4

\:\:

\sf \longmapsto 30 + 6l + 6b = 8l + 8b⟼30+6l+6b=8l+8b

\:\:

\sf \longmapsto 2l + 2b = 30⟼2l+2b=30

\:\:

\underline{\bold{\texttt{Dividing the above equation by 2}}}

Dividing the above equation by 2

\:\:

\sf \longmapsto l + b = 15⟼l+b=15 -------(2)

\:\:

\underline{\bold{\texttt{Putting l = 2b in (2)}}}

Putting l = 2b in (2)

\:\:

\sf \longmapsto 2b + b = 15⟼2b+b=15

\:\:

\sf \longmapsto b = \dfrac { 15 } { 3 }⟼b=

3

15

\:\:

\sf \longmapsto b = 5⟼b=5

\:\:

\underline{\bold{\texttt{Putting b = 5 in (1)}}}

Putting b = 5 in (1)

\:\:

\sf \longmapsto l = 2(5)⟼l=2(5)

\:\:

\sf \longmapsto l = 10⟼l=10

\:\:

Hence length of rectangle will be 10 cm and breadth be 5 cm.

\rule{200}5

Answered by sagar2619
2

Answer:

let length and breadth be 2x,1x

now,

new length= 2x +2

new breadth=1x+3

let ratio of perimeter of new and original rectangle be 4x,3x

so,

p= 2(l+b)

3x=2(2x+1x)

3x=6x

now,

p of new rectangle=4x

4x=2(2x+2+1x+3)

4x=4x+4+2x+6

4x=6x+10

-2x=10

x=-5

Similar questions