Math, asked by paramjeetsidhu86, 1 year ago

the length and the breadth of a rectangular field is 480 255 find the length of wire required to fencing it also find the cost of fencing @ rupees 7 per metre​

Answers

Answered by Saara777
17

Answer:

10290

Step-by-step explanation:hi pls tell where is the mistake

Attachments:
Answered by BrainlyKing5
46

Answer :

\underline{\boxed{\mathsf{1470m \: and \: 10,290rs}}}

Given :

  • Length of field = 480m
  • Breadth of field = 255m

To find :

  • Length of wire required to fencing .
  • Cost of wire at 7rs per metre.

Solution :

\setlength{\unitlength}{2cm}</p><p>\begin{picture}(16,4)</p><p>\thicklines</p><p>\put(8,3){\circle*{0.1}}</p><p>\put(7.8,3){\large{A}}\put(7.4,2){\mathsf{\large{255m}}}</p><p>\put(8,1){\circle*{0.1}}</p><p>\put(7.8,1){\large{B}}\put(9.3,0.8){\mathsf{\large{480m}}}</p><p>\put(11.1,1){\large{C}}</p><p>\put(8,1){\line(1,0){3}}</p><p>\put(11,1,){\circle*{0.1}}</p><p>\put(8,1){\line(0,2){2}}</p><p>\put(11,1){\line(0,3){2}}</p><p>\put(8,3){\line(3,0){3}}</p><p>\put(11,3){\circle*{0.1}}\put(11.1,3){\large{D}}\end{picture}

PART - 1 (Length of wire)

Now we know that,

\boxed{\bigstar \: \mathsf{Perimeter \: of \: Rectangle = \: 2(Length \: + \: Breadth)}}

Therefore ,

\mathsf{\longrightarrow \: Boundary \: (perimeter) \: = Length \: of \: wire = 2(480m + 255m)}

\mathsf{\longrightarrow \: Length \: of \: wire \: required = 2(480m + 255m)}

\mathsf{\longrightarrow \: Length \: of \: wire \: required = 2(735m)}

\mathsf{\longrightarrow \:  1470m}

Therefore we have

\mathsf{\longrightarrow \: Length \: wire \: required\: to fence = \boxed{1470m}}

\rule{290}{1}

PART - 2 (Cost for fencing)

Now we know,

\mathsf{\longrightarrow \: Length \: of \: Wire = 1470m}

\mathsf{\longrightarrow \: Cost \: per\:metre = 7rs}

Therefore

\mathsf{\longrightarrow \: Total \: cost \: fencing = 1470m \times 7rs}

\mathsf{\longrightarrow \:  = 1470m \times 7rs}

\mathsf{\longrightarrow \: = 10,290rs}

Therefore we have

\mathsf{\longrightarrow \: Total \: Cost \: of \: fencing = \boxed{10,290rs}}

\rule{300}{1}

\huge \underline{\mathsf{\star \: \blue{More \: to \: know \: }\star }}

Formula Related To Rectangle

\mathsf{\longrightarrow \: Area \: of \:  Rectangle = Length \times Breadth}

\longrightarrow \: \mathsf{Perimeter \: of \: Rectangle = \: 2(Length \: + \: Breadth)}

Formula Related To Rectangle

\mathsf{\longrightarrow \: Area \: of \: Square = {(Side)}^{2}}

\longrightarrow \: \mathsf{Perimeter \: of \: Square = \: 4(Side)}

Formula Related To Square

\mathsf{\longrightarrow \: Area \: of \: Triangle = \dfrac{1}{2} Base \times Height}

\longrightarrow \: \mathsf{Perimeter \: of \: Triangle= \: Sum \: of \: all \: Sides}

\rule{290}{1}

#answerwithquality #BAL

Similar questions