Math, asked by bulideba6, 5 months ago

The length, breadth and height of a cuboid are in the ratio of 4:2:1 and it's total surface area is 1372 metre square. Find the dimensions of the cuboid.​

Answers

Answered by mathdude500
16

\large\underline\blue{\bold{Given \:  Question :-  }}

  • The length, breadth and height of a cuboid are in the ratio of 4:2:1 and it's total surface area is 1372 metre square. Find the dimensions of the cuboid.

─━─━─━─━─━─━─━─━─━─━─━─━─

\huge{AηsωeR} ✍

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Given  :-  }}

  • The length, breadth and height of a cuboid are in the ratio of 4:2:1 and it's total surface area is 1372 metre square.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{To \:  Find :-  }}

  • The dimensions of the cuboid.

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\blue{\bold{Formula \:  Used  :-  }}

{{ \boxed{{\bold\green{Total \:  Surface \:  Area_{(Cuboid)}\: = 2(lb + bh + hl)}}}}}

\begin{gathered}\begin{gathered}\bf where= \begin{cases} &\sf{l = length \: of \: cuboid} \\ &\sf{b = breadth \: of \: cuboid} \\ &\sf{h \:  = height \: of \: cuboid}\end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

\large\underline\purple{\bold{Solution :-  }}

The length, breadth and height of a cuboid are in the ratio of 4:2:1.

\begin{gathered}\begin{gathered}\bf Let= \begin{cases} &\sf{length \: of \: cuboid \: be \: : l = 4x} \\ &\sf{breadth \: of \: cuboid \: be: b = 2x}\\ &\sf{height \: of \: cuboid: be \: h = x } \end{cases}\end{gathered}\end{gathered}

\sf \:  T \:  S \:  A_{(Cuboid)}\: = 2(lb + bh + hl)

\sf \:  T \:  S \:  A_{(Cuboid)}\: =2(4x \times 2x + 2x \times x + x \times 4x)

\sf \:  T \:  S \:  A_{(Cuboid)}\: =2( {8x}^{2}  +  {2x}^{2}  +  {4x}^{2} )

\sf \:  T \:  S \:  A_{(Cuboid)}\: =2 \times  {14x}^{2}

\sf \:  T \:  S \:  A_{(Cuboid)}\: =28 {x}^{2}

\begin{gathered}\bf\red{According \: to \: statement}\end{gathered}

\sf \:  T \:  S \:  A_{(Cuboid)}\: = \: 1372

\sf\implies \: {28x}^{2}  = 1372

\sf\implies \: {x}^{2}  = {\cancel\dfrac{1372}{28}49}

\sf\implies \:x = 7

\begin{gathered}\begin{gathered}\bf Dimensions = \begin{cases} &\sf{length : l = 4x = 4 \times 7 = 28 \: m} \\ &\sf{breadth : b = 2x = 2 \times 7 = 14 \: m}\\ &\sf{height : h = x  = 7 \: m} \end{cases}\end{gathered}\end{gathered}

─━─━─━─━─━─━─━─━─━─━─━─━─

Similar questions