Math, asked by kumarisweta10012004, 9 months ago

The length, breadth and height of a room is 16 feet , 12 feet and 10 feet
respectively. How many boxes measure 6 feet long 4 feet wide and 2 feet
high can be arranged in the room? Plz help me with my question.​

Answers

Answered by ButterFliee
27

GIVEN:

  • Length, Breadth and height of room is 16 feet, 12 feet and 10 feet respectively.
  • Length, Breadth and height of box is 6 feet, 4 feet and 2 feet respectively.

TO FIND:

  • How many boxes can be arranged in a room ?

SOLUTION:

First, we need to find the volume of room

  • LENGTH = 16 feet
  • BREADTH = 12 feet
  • HEIGHT = 10 feet

To find the volume of room, we use the formula:-

\large{\boxed{\bf{\star \: VOLUME = L \times B \times H \: \star}}}

According to question:-

VOLUME = 16 \times 12 \times 10

VOLUME = 1920 feet³

Now, we have to find the volume of box.

  • LENGTH = 6 feet
  • BREADTH = 4 feet
  • HEIGHT = 2 feet

According to question:-

On putting the given values in the above mentioned formula, we get

VOLUME = 6 \times 4 \times 2

✰ VOLUME = 48 feet³ ✰

Number of boxes arranged in room are:-

\bf{\dfrac{Volume \: of \: room}{Volume \: of \: Box}}

\bf{\cancel\dfrac{1920}{48}}

Number of boxes = 40

Hence, the number of boxes arranged in room are 40

______________________

Answered by Anonymous
30

QUESTION:-

✯ᴛʜᴇ ʟᴇɴɢᴛʜ, ʙʀᴇᴀᴅᴛʜ ᴀɴᴅ ʜᴇɪɢʜᴛ ᴏғ ᴀ ʀᴏᴏᴍ ɪs 16 ғᴇᴇᴛ , 12 ғᴇᴇᴛ ᴀɴᴅ 10 ғᴇᴇᴛ ʀᴇsᴘᴇᴄᴛɪᴠᴇʟʏ. ʜᴏᴡ ᴍᴀɴʏ ʙᴏxᴇs ᴍᴇᴀsᴜʀᴇ 6 ғᴇᴇᴛ ʟᴏɴɢ 4 ғᴇᴇᴛ ᴡɪᴅᴇ ᴀɴᴅ 2 ғᴇᴇᴛ ʜɪɢʜ ᴄᴀɴ ʙᴇ ᴀʀʀᴀɴɢᴇᴅ ɪɴ ᴛʜᴇ ʀᴏᴏᴍ? ᴘʟᴢ ʜᴇʟᴘ ᴍᴇ ᴡɪᴛʜ ᴍʏ ϙᴜᴇsᴛɪᴏɴ.

ANSWER

\Large\underline\bold{GIVEN,}

 \sf\large\therefore FOR\: ROOM,

 \sf\dashrightarrow  L=16feet

 \sf\dashrightarrow B=12feet

 \sf\dashrightarrow  H=10feet

 \sf\large\therefore FOR\:BOX

 \sf\dashrightarrow  L=6feet

 \sf\dashrightarrow B=4feet

 \sf\dashrightarrow  H=2feet

\Large\underline\bold{TO\:FIND}

 \sf\therefore THE\:NUMBER\:OF\:BOX\:ARRANGED\:IN\:A\:ROOM

 \sf\large\therefore taking\:two\:cases

 \sf\therefore in\:case\:1st\:we\:will\:find\:volume\:of\:room\:and\:box

 \sf\therefore in\:2nd\:case\:finding\:no\:of\:box\:arranged\:in\:a\:room

\Large\underline\bold{SOLUTION,}

\Large\underline\bold{According\:to\:question}

\huge {\fbox {CASE:-1}}

 \sf\large\therefore finding\:the\:volume\:of\:room(cuboid),

 \sf\large\therefore FOR\: ROOM,

 \sf\dashrightarrow  L=16feet

 \sf\dashrightarrow B=12feet

 \sf\dashrightarrow  H=10feet

\Large\underline\bold{by\:using\:formula,}

 \large\bold\therefore VOLUME\:OF\:CUBOID = L \times B \times H

 \sf\implies 16 \times 12 \times 10

 \sf\implies 16 \times 120

 \sf\implies 1920feet^3

\large{\boxed{\sf{=1920feet^3}}}

NOW,

 \sf\large\therefore finding\:the\:volume\:of\:box(cuboid),

 \sf\large\therefore FOR\:BOX

 \sf\dashrightarrow  L=6feet

 \sf\dashrightarrow B=4feet

 \sf\dashrightarrow  H=2feet

 \large\bold\therefore VOLUME\:OF\:CUBOID = L \times B \times H

 \sf\implies 6 \times 4 \times 2

 \sf\implies 6 \times 8

 \sf\implies 48feet^3

\large{\boxed{\sf{=48feet^3}}}

\huge {\fbox {CASE:-2}}

 \sf\large\therefore finding\:number\:of\:boxes\:in\:a\:room,

ACCORDING TO THE QUESTION,

to find the no. of foxes in a room we use,

formula used,

 \sf\implies \dfrac{Volume \: of \: room}{Volume \: of \: Box}

\sf\large\implies \dfrac{\cancel {1920}}{ \cancel {48}}

\large {\fbox {=40 }}

\Large\underline\bold{the\:number\:of\:boxes\:can\:be\:arranged\:is\:48}

\sf{\boxed{\sf{the\:number\:of\:boxes\:arranged\:are\:40}}}

________________________

Similar questions