Math, asked by bantiverma224203, 7 months ago

The length, breadth and height of a wooden box with a lid are 10 cm, 9 cm and 7 cm, respectively. the total inner surface of the closed box is 262 cm2. the thickness of the wood (in cm) is​

Answers

Answered by lalit4286
0

Answer:

1 cm

Step-by-step explanation:

Let the thickness be x

Outer length = 10 cm

Outer breadth = 9 cm

Outer Height = 7 cm

Inner length = 10-2x cm

Inner breadth = 9-2x cm

Inner Height = 7-2x cm

Total inner surface area = 2(lb+bh+hl)2(lb+bh+hl)2(lb+bh+hl)

= 2((10−2x)(9−2x)+(9−2x)(7−2x)+(7−2x)(10−2x))2((10-2x)(9-2x)+(9-2x)(7-2x)+(7-2x)(10-2x))2((10−2x)(9−2x)+(9−2x)(7−2x)+(7−2x)(10−2x)) ---1

Now we are given that he total inner surface of the closed box is 262 sq.cm.

So, 2((10−2x)(9−2x)+(9−2x)(7−2x)+(7−2x)(10−2x))=2622((10-2x)(9-2x)+(9-2x)(7-2x)+(7-2x)(10-2x))=2622((10−2x)(9−2x)+(9−2x)(7−2x)+(7−2x)(10−2x))=262

20x2+190x+446=26220x^2+190x+446=26220x

2

+190x+446=262

General form of quadratic equation : ax2+bx+c=0ax^2+bx+c=0ax

2

+bx+c=0

Using quadratic formula : x=−b±b2−4ac2ax=\frac{-b\pm\sqrt{b^2-4ac}}{2a}x=

2a

−b±

b

2

−4ac

x=−190±1902−4(20)(446)2(20)x=\frac{-190\pm\sqrt{190^2-4(20)(446)}}{2(20)}x=

2(20)

−190±

190

2

−4(20)(446)

x=194−106954,194+106954x=\frac{19}{4}-\frac{\sqrt{\frac{1069}{5}}}{4},\frac{19}{4}+\frac{\sqrt{\frac{1069}{5}}}{4}x=

4

19

4

5

1069

,

4

19

+

4

5

1069

x=1.0945,8.40x=1.0945,8.40x=1.0945,8.40

So, x ≈ 1 , 8

Substituting x = 8 in 1 we get area = 318 sq.cm

Substituting x = 1 we gwt area = 262 sq.cm

Hence the thickness is 1 cm.

Similar questions