Math, asked by PiyushGoyal0, 3 months ago

The length of a cold storage is double its breadth .its height is 3 metres the area of its four walls ( including door ) is 108 m². find its volume​

Answers

Answered by thebrainlykapil
69

\large\underline{ \underline{ \sf \maltese{ \: Question:- }}}

  • The length of a cold storage is double its breadth . Its height is 3 metres the area of its four walls ( including door ) is 108 m². Find its volume.

 \\ \\

\large\underline{ \underline{ \sf \maltese{ \: Given\: or \: Assume:- }}}

  • Let Length , Breadth and Height of the Cold Storage be L metres , B metres , H metres respectively.
  • Length = 2b ( given )
  • Height = 3 ( given )
  • Area of four Walls = 108m²

\\ \\ \\

\large\underline{ \underline{ \sf \maltese{ \:To\:  Find :- }}}

  • Volume of Cold Storage.

 \\ \\ \\

\large\underline{ \underline{ \sf \maltese{ \: Solution:- }}}

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Area \: of \: Four \: Walls \: = \: 2( \: Length \:  +  \: Breadth \: ) \:  \times  \: Height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

\qquad \quad {:} \longrightarrow \sf{\sf{108 \: = \: 2( \: Length \:  +  \: Breadth \: ) \:  \times  \: Height  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{108 \: = \: 2( \: 2b \:  +  \: Breadth \: ) \:  \times  \: 3  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{108 \: = \: 4b \: + \: 2b \: \times \: 3  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{108 \: = \: 18b  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ \frac{108}{18}  \: = \: b  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{\cancel\green{ \frac{108}{18}}  \: = \: b  }}\\

\qquad \quad {:} \longrightarrow \sf{\sf{ 6  \: = \: b  }}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Breadth \: = \: 6   }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

  • Length = 2b = 2 × 6 = 12 metre.

\bf \therefore \; </strong><strong>Length</strong><strong>= </strong><strong>1</strong><strong>2</strong><strong>m</strong><strong>

\bf \therefore \; </strong><strong>Breadth </strong><strong>= </strong><strong>6</strong><strong>m

\bf \therefore \; </strong><strong>Height</strong><strong> </strong><strong>= </strong><strong>3</strong><strong>m

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\begin{gathered}: \implies \underline\blue{ \boxed{\displaystyle \sf \bold\orange{\: Volume \: of \: Cold \: Storage\: = \:  \: Length \: \times \: Breadth \:  \times  \: Height   }} }\\ \\\end{gathered}\end{gathered}\end{gathered}

 \quad {:} \longrightarrow \sf{\sf{ Volume \: of \: Cold \: Storage\: = \:  \: 12 \: \times \: 6 \:  \times  \: 3}}\\

 \quad {:} \longrightarrow \sf{\sf{ Volume \: of \: Cold \: Storage\: = \:  216{m}^{3}}}\\

\qquad\quad {:} \longrightarrow \underline \red{\boxed{\sf{Volume \: of \: Cold \: Storage \: = \:216{m}^{3}  }}}\\ \\

━━━━━━━━━━━━━━━━━━━━━━━━━

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{  Volume \: of \: Cold \: Storage\: = \underline {\underline{ 216{m}^{3}}}}\\\end{gathered}\end{gathered}

━━━━━━━━━━━━━━━━━━━━━━━━━

Answered by BetteRthenUhh
2

\begin{gathered}\begin{gathered}\qquad \therefore\: \sf{  Volume \: of \: Cold \: Storage\: = \underline {\underline{ 216{m}^{3}}}}\\\end{gathered}\end{gathered}

Similar questions