Math, asked by suma18, 1 year ago

the length of a cold storage is doubled its breadth. its height is 3 metres. the area of its four walls is 180 m sq. find its volume

Answers

Answered by Anonymous
8

 \bold{Given : }

The length of a cold storage is doubled its breadth. its height is 3 metres. the area of its four walls is 180 m sq.

 \bold{To \:  find \:  out  : }

Find the volume of cuboid?

 \bold{Formula  \: used  : }

★ Area of four walls = 2 ( l + b ) × h

★ Volume of cuboid = l × b × h

 \bold{Solution }:

Let the length, breadth and height of the cold storage be l, b and h respectively.

Then, l = 2b and h = 3m [ Given ]

Now,

 \sf{Area  \: of \:  the \:  four  \: walls = 108  {m}^{2} }

 \rightarrow \: 2(l + b)  \times h = 108

 \rightarrow \: 2(2b + b) \times 3 = 108

 \rightarrow \: 2 \times 3b \times 3 = 108

 \rightarrow18b = 108

 \rightarrow \: b =  \cancel \frac{108}{18}

 \rightarrow \: b = 6 \: m

  • Breadth = 6m

  • Length = 2b = 2 × 6 = 12m

Hence,

Volume of the cold storage = length × breadth × height

= 12 × 6 × 3

= 216 m³

Answered by Anonymous
19

⠀⠀⠀⠀\huge\underline{ \mathrm{ \red{QueS{\pink{tiOn}}}}}

the length of a cold storage is doubled its breadth. its height is 3 metres. the area of its four walls is 180 m sq. find its volume

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

⠀⠀⠀\huge{ \underline{ \purple{ \bold{ \underline{ \mathrm{ExPlanA{\green{TiOn }}}}}}}}

\rm{ \color{blue}{{Given}\begin{cases}\textsf{length = double \: to \: its \: breath}\\\textsf{height = 3m}\\\textsf{area \: of \: four \: walls = 18m \: sq} \end{cases}}}

  \large\underline{ \underline{ \red{ \bold {To \:Find}}}}

We need to find the volume of cuboid.

⠀⠀⠀⠀⠀\huge\underline{ \underline{ \orange{ \bold{sOluTiOn}}}}

⠀⠀⠀⠀⠀

\bf\:Letthe length be x and breadth be y.

 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \bf \underbrace { \color{red}{ \: according \: to \: question \: }}\\ \\   \:  \:  \:  \:  \: \bf \red{length \: is \: doubled \: to \: its \: breadth}

⠀⠀⠀⠀⠀⠀⠀⠀so,

so,⠀⠀⠀⠀⠀⠀⠀⠀length = 2y

\color{green} \underline{ \boxed{ \rm{area \: of \: four \: walls \:  = 2 \times (l + b) \times h}}}

➩⠀⠀⠀⠀⠀\bf\:2\times(2y+y)\times3=108

➩⠀⠀⠀⠀⠀\bf\:2\times(3y)\times3=108

➩⠀⠀⠀⠀⠀\bf\:6\times3y=108

➩⠀⠀⠀⠀⠀\bf\:18y=108

➩⠀⠀⠀⠀⠀\bf\:y=\cancel\dfrac{108}{18}

➩⠀⠀⠀⠀⠀\bf\:y=6m

⠀⠀⠀⠀⠀⠀⠀⠀⠀\bf\:so, breadth= 6m

➼⠀⠀⠀⠀⠀⠀⠀⠀\bf\:length\: x=2y

➼⠀⠀⠀⠀⠀⠀⠀⠀\bf\:Length = 2\times6

➨⠀⠀⠀⠀⠀\underline{\boxed{\bf{\color{purple}{Length=12m}}}}

{ \underline{ \boxed<strong> </strong>{\bf{ \color{blue}{volume \: of \: cold \: store \:  = l \times b \times h}}}}}

⠀⠀⠀⠀⠀\bf\:= 12\times6\times3

➤⠀⠀⠀⠀⠀\underline{\boxed{\bf{\color{red}{volume=216{m}^{3}}}}}

━━━━━━━━━━━━━━━━━━━━━━━━━━━━━━

Similar questions