Math, asked by archigarg893, 5 hours ago

the length of a floor is 6 m 66cm and the breadth is 4 m 40 cm what is the maximum length of square tiles that can complete cover the floor se​

Answers

Answered by wahidabegumbarbhuiya
0

Answer:

Length of the floor =8 m 96 cm=896 cm

Breadth of the floor =6 m 72 cm=672 cm

H.C.F. of 896 and 672 is =2×2×2×2×2×7=224

So, the required size of the square tile must be 224×224

Hence, the minimum number of square tiles of the same size needed to cover the floor =

Area of one square tile

Area of the floor

=

(224×224)

(896×672)

=

50176

602112

=12

Hence, 12 square tiles each of 224 cm×224 cm will be needed to cover the entire floor.

Answered by AtikRehan786
0

Step-by-step explanation:

Length  \: of  \: the \:  floor =8 m 96 cm=896 cm \\ </p><p></p><p>Breadth  \: of \:  the \:  floor= \\ 6 m 72 cm=672 cm \\ </p><p></p><p></p><p>H.C.F. of  \: 896 and 672  \: is \\  =2×2×2×2×2×7=224 \\ </p><p></p><p>So, the \:  required \:  size  \: of \:  the   \\ \: square  \: tile \:  must \:  be 224×224 \\ </p><p></p><p>Hence, the  \: minimum \:  number  \: of   \\ \: square \:  tiles \:  of  \: the \:  same  \: size  \\ \:  needed  \: to  \: cover \:  the \:  floor \\  =\frac{Area \:  of  \: one \:  square  \: tile }{Area  \: of the floor  </p><p>}   \\ </p><p></p><p>=\frac{(224×224) }{(896×672)} \\ </p><p></p><p>= \frac{60211}{50176}  \\ </p><p></p><p>=12  \\ </p><p></p><p>Hence, 12  \: square \:  tiles \:  each \:  of  \: \\  224 cm×224 cm will \:  be \:  needed \: \\   to \:  cover \:  the \:  entire \:  floor.</p><p></p><p>

Attachments:
Similar questions