Math, asked by alvinachhipa260409, 5 months ago

the length of a LCD is 75 cm and breadth is 55 cm .Area of LCD is dash sq.cm .​

Answers

Answered by kailashmannem
23

________________________________

 \huge{\bf{\green{\mathfrak{Question:-}}}}

  • The length of a LCD is 75 cm and breadth is 55 cm. Area of LCD is ____ cm² .

_________________________________

 \huge {\bf{\orange{\mathfrak{Answer:-}}}}

  •  \textsf{Length of LCD = 75 cm.}

  •  \textsf{Breadth of LCD = 55 cm.}

  •  \textsf{Since, LCD (Display object/unit) is in the form of a Rectangle,}

  •  \boxed{\textsf{Area of LCD = Area of Rectangle}}

  • \boxed{\sf Area \: of \: Rectangle \: =\: l * b \:units^{2}}

  • \sf l * b \:units^{2}

  • \sf 75 * 55

  •  \boxed{\sf 4,125 \:units^{2}.}

________________________________

 \huge{\bf{\red{\mathfrak{Conclusion:-}}}}

  •  \boxed{\therefore{\sf Area\: of\: LCD\: =\: 4,125 \:units^{2}.}}

________________________________

Answered by abhishek917211
5

Given :-

Length = 2( Breadth)

If Length = L - 55 cm

Then Breadth = B +55 cm

And Area (A') = A + 75 cm²

Solution :-

Area of rectangle = Length × Breadth .

→ Initial Area :-

→ Area (A) = L × B

→ Area (A) = 2B × B .

→ Area (A) = 2B²

→ New Area .

→ Area (A') =( L-55 ) × (B +55)

→ Area (A') = (2B -55) × (B + 55)

→ Area (A') = 2B² + 110 B - 55B - 3025

→ Area (A') = 2B² + 55B - 3025

→ A' = A + 75 [ where A = 2B²]

→ 2B² + 75 = 2B² + 55B - 3025

→ 2B² - 2B² +75 + 3025 = 55B

→ 3100 = 55B

→ B = 3100/55

→ Breadth = 56.36 cm

→ length = 2(56.36)

→ Length = 112.72 cm

Hence the length of the given rectangle is 112.72 cm .

Similar questions