Math, asked by gs288436, 2 months ago

the perimeter of a rectangular swimming pool is 154m .its length is 2m more than twice its breadth.what are the length and the breadth of the pool​

Answers

Answered by BrainlyRish
17

❍ Let's Consider breadth of Rectangular swimming pool be x .

Given that ,

⠀⠀⠀⠀⠀It's length is 2m more than twice its breadth .

Then ,

  • Length of Rectangular swimming pool is 2 + 2x .

\underline {\frak{\dag As \:We  \:know \:that \: : }}\\

\qquad \qquad \qquad \underline {\boxed {\sf{ \bigstar Perimeter _{(Rectangle)} = 2 (l + b) \:units}}}\\\\

Where ,

  • l is the Length of Rectangle in m and b is the Breadth of Rectangle in m and We have given with the Perimeter of Rectangle is 154 m .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( x + 2 + 2x  )}\\

\qquad \qquad:\implies \sf{ \dfrac{\cancel {154}}{\cancel {2}}  =  x + 2 + 2x  }\\

\qquad \qquad:\implies \sf{ 77 =  x + 2 + 2x  }\\

\qquad \qquad:\implies \sf{ 77 =   2 + 3x  }\\

\qquad \qquad:\implies \sf{ 77 - 2 =  3x  }\\

\qquad \qquad:\implies \sf{ 75 =  3x  }\\

\qquad \qquad:\implies \sf{ \dfrac{\cancel {75}}{\cancel {3}} =  x  }\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  x = 25\: m}}}}\:\bf{\bigstar}\\

Therefore,

  • Length of Rectangle is 2 + 2x = 2 + 2 × 25 = 50 + 2 = 52 m .

  • Breadth of Rectangle is x = 25 m .

Therefore,

⠀⠀⠀⠀⠀\therefore{\underline{\mathrm {  Length \:and\:Breadth \:of\:Rectangular \:swimming \:pool\:is\:\bf{52m\:and\:25 m\:}\: \: ,respectively. }}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

\large {\boxed{\sf{\mid{\overline {\underline {\star Verification \::}}}\mid}}}\\\\

\underline {\frak{\dag As \:We  \:know \:that \: : }}\\

\qquad \qquad \qquad \underline {\boxed {\sf{ \bigstar Perimeter _{(Rectangle)} = 2 (l + b) \:units}}}\\\\

Where ,

  • l is the Length of Rectangle in m and b is the Breadth of Rectangle in m and We have given with the Perimeter of Rectangle is 154 m .

⠀⠀⠀⠀⠀⠀\underline {\bf{\star\:Now \: By \: Substituting \: the \: Given \: Values \::}}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( 25 + 52  )}\\

\qquad \qquad:\implies \sf{ 154 m = 2 ( 77  )}\\

⠀⠀⠀⠀⠀\underline {\boxed{\pink{ \mathrm {  154m = 154\: m}}}}\:\bf{\bigstar}\\

⠀⠀⠀⠀⠀\therefore \bf{\underline { Hence \:Verified \:}}\\

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Diagram :

  • \setlength{\unitlength}{1cm}\begin{picture}(0,0)\thicklines\multiput(0,0)(5,0){2}{\line(0,1){3}}\multiput(0,0)(0,3){2}{\line(1,0){5}}\put(0.03,0.02){\framebox(0.25,0.25)}\put(0.03,2.75){\framebox(0.25,0.25)}\put(4.74,2.75){\framebox(0.25,0.25)}\put(4.74,0.02){\framebox(0.25,0.25)}\multiput(2.1,-0.7)(0,4.2){2}{\sf\large 52\: m}\multiput(-1.4,1.4)(6.8,0){2}{\sf\large 25\: m}\put(-0.5,-0.4){\bf A}\put(-0.5,3.2){\bf D}\put(5.3,-0.4){\bf B}\put(5.3,3.2){\bf C}\end{picture}

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Note : Kindly view this Answer in web :)

⠀⠀⠀⠀⠀━━━━━━━━━━━━━━━━━━━⠀

Answered by Anonymous
51

Given:

  • the perimeter of a rectangular swimming pool is 154m
  • its length is 2m more than twice its breadth.

To Find:

  • breadth.what are the length and the breadth of the pool

Solution:

Here, we have given that the perimeter of the swimming pool is 154m and the length of the swimming pool is 2m more than twice of the breadth of the pool

Now,

  • Let the Breadth of the pool be Xm

★as the length os 2m more that twice the breadth

  • So, Length of the pool is 2x + 2m

As we know that,

 {\longrightarrow }\tt \: perimeter \: of \: rectangle = 2(l + b)

So, let's substitute the values now and simply the equation so that we will find the dimensions of the pool

 {\longrightarrow }\tt \: perimeter = 2(l + b) \:  \:  \\  \\  \\  {\longrightarrow }\tt \: 154m = 2(x + 2x + 2) \:  \:  \:  \:  \\  \\  \\ {\longrightarrow }\tt \: 154m = 2(3x + 2) \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\   {\longrightarrow }\tt \: 154m = 6x + 4 \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  {\longrightarrow }\tt \: 6x = 154 - 4m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  {\longrightarrow }\tt \: 6x = 150m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\  \\  \\  {\longrightarrow }\tt \: x =  \cancel \frac{150m}{6}  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:    \\  \\  \\   \orange{\longrightarrow \tt \: x = 25m \bigstar} \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:

Now, Let's find the dimensions,

  • Length of the pool =  \pink{ \tt \: 2x + 2 = 52m}
  • Breadth of the pool =  \pink{ \tt \: x  = 25m}

Hence,

  • The dimensions are 52m and 25m

Diagram:

 \tt52m \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \:  \\ \begin{gathered}\begin{gathered}\boxed{\begin{array}{}\bf { \red{}}\\{\qquad \: \: \: \: \:  \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: \: }{}\\ { \sf{ }}\\ { \sf{ }} \\ \\ { \sf{ }}\end{array}}\end{gathered}\end{gathered} \tt25m

More Info:

★Area of a rectangle = length × breadth

★ Area of a square = side × side

★ Area of a triangle = ½ × base × hieght

★ Area of a rhombus = d₁ × d₂ / 2

★ Area of a parallelogram = base × hieght

★ Perimeter of square = 4 × side

Similar questions